
Security Engineering: A Guide to Building Dependable Distributed Systems

135

PART

Two

In the second part of the book, I describe a large number of applications of secure sys-
tems, many of which introduce particular protection concepts or technologies.

There are four successive themes. Chapters 7 through 9 look at conventional com-
puter security issues, and by discussing what one is trying to do and how it’s done in
different environments—the military, banks, and healthcare—I introduce security pol-
icy models, which set out the protection concepts that real systems try to implement. I
also introduce the first detailed case studies in these chapters. An example is the
worldwide network of automatic teller machines, which illustrates many of the prob-
lems of transferring familiar protection properties from a bank branch to a global dis-
tributed environment using cryptography.

Chapters 10 through 15 look at the hardware engineering aspects of information se-
curity. This includes biometrics, the design of various tokens such as smartcards, tam-
per resistance and tamper evidentness, emission security, and seals. New applications
that illustrate the technologies are described, ranging from electronic warfare and nu-
clear weapons control to taximeters, truck speed limiters, and prepayment gas meters.

The third theme is attacks on networks. I start off in Chapter 16 by covering elec-
tronic and information warfare, as these activities give some of the more extreme ex-
amples and show how far techniques of denial, deception, and exploitation can be
taken by a resourceful opponent under severe operational pressure. This chapter also
gives a view of surveillance and intrusion from the point of view of police forces and
intelligence agencies, and introduces a number of new concepts, such as anonymity
and traffic analysis. We then study the lessons of history by examining frauds on phone
systems and on applications that rely on them in Chapter 17. This sets the scene for a
discussion in Chapter 18 of attacks on computer networks and defensive technologies
such as firewalls and intrusion detection.

The fourth theme is electronic commerce, which I tackle in Chapters 19 and 20. The
most high-profile applications are schemes for protecting credit card transactions on
the Net, such as SSL/TLS; they are also used for other applications such as medical
image distribution. They introduce the debate about public key infrastructures. In ad-
dition, I consider mechanisms for copyright protection, specifically, pay-TV, DVD,
and copyright watermarking.

Chapter 7: Multilevel Security

136

One reason for this ordering is to give the chapters a logical progression. Thus, for
example, I discuss frauds against magnetic stripe bank cards before going on to de-
scribe the smartcards that may replace them and the pay-TV systems that actually use
smartcards today. That said, sometimes a neat linear ordering isn’t possible, as a par-
ticular technology has evolved through a number of iterations involving more than one
application. In that case, I try to describe it in a case history.

Finally, to keep the book manageable for readers who will use it primarily as a ref-
erence rather than as a textbook, I have put the more technical material toward the end
of each chapter or section. That way, if you get lost at a first reading, you can just skip
to the next section and carry on.

Security Engineering: A Guide to Building Dependable Distributed Systems

137

CHAPTER

7

Multilevel Security

At times, in the name of national security, secrecy has put that very

 security in harm’s way.

—DANIEL PATRICK MOYNIHAN

I brief;

 you leak;

 he/she commits a criminal offence

 by divulging classified information

—BRITISH CIVIL SERVICE PROVERB

7.1 Introduction

I mentioned in the introduction that military database systems, which can hold infor-
mation at a number of different levels of classification (confidential, secret, top secret,
. . .) have to ensure that data can be read only by a principal whose level is at least as
high as the data’s classification. These systems are important because:

• A huge amount of research has been done on them, thanks to military funding
for computer science in the United States. So the military model of protection
has been worked out in much more detail than any other, and it gives us a lot
of examples of the second-order and even third-order effects of implementing
a security policy rigorously.

• Some of the products developed to support military multilevel security may
find a new lease on life as platforms for firewalls and Web servers. They give
some assurance that even although a firewall or server software might be
hacked, the underlying operating system is not likely to be.

Chapter 7: Multilevel Security

138

• Although multilevel concepts were originally developed to support confidenti-
ality in military systems, there are now many commercial systems that use
multilevel integrity policies. For example, phone companies want their billing
system to be able to see what’s happening in their switching system, but not
affect it.

• Multilevel confidentiality ideas are often applied in environments where
they’re ineffective or even harmful, because of the major vested interests and
momentum behind them.

Sir Isaiah Berlin famously described thinkers as either foxes or hedgehogs: a fox
knows many little things, while a hedgehog knows one big thing. The multilevel phi-
losophy is the hedgehog approach to security engineering.

7.2 What Is a Security Policy Model?

Where a top-down approach to security engineering is possible, it will typically take
the form of threat model—security policy—security mechanisms. The critical, and of-
ten neglected, part of this process is the security policy.

By a security policy, I mean a document that expresses clearly and concisely what
the protection mechanisms are to achieve. It is driven by our understanding of threats,
and in turn drives our system design. It will often take the form of statements about
which users may access which data. It plays the same role in specifying the system’s
protection requirements, and evaluating whether they have been met, as the system
specification does for general functionality. Indeed, a security policy may be part of a
system specification, and like the specification, its primary function is to communicate.

Many organizations use the phrase ‘security policy’ to mean a collection of vapid
statements. Figure 7.1 gives a simple example. This sort of waffle is very common, but
is useless to the security engineer.

Its first failing is that it dodges the central issue, namely ‘Who determines “need-to-
know” and how?’ Second, it mixes statements at a number of different levels (organi-
zational approval of a policy logically should not be part of the policy itself). Third,
there is a mechanism, but it’s implied rather than explicit: “staff shall obey”—but what
does this mean they actually have to do? Must the obedience be enforced by the sys-
tem, or are users “on their honor?” Fourth, how are breaches to be detected and who
has a specific duty to report them?

Figure 7.1 A typical corporate information security policy.

Security Engineering: A Guide to Building Dependable Distributed Systems

139

We must do better than this. In fact, because the term ‘security policy’ is widely
abused to mean a collection of managerialist platitudes, there are three more precise
terms that have come into use to describe the specification of protection requirements:

A security policy model is a succinct statement of the protection properties that a
system, or generic type of system, must have. Its key points can typically be written
down in a page or less. It is the document in which the protection goals of the system
are agreed to by an entire community, or with the top management of a customer. It
may also be the basis of formal mathematical analysis.

A security target is a more detailed description of the protection mechanisms that a
specific implementation provides, and how they relate to a list of control objectives
(some but not all of which are typically derived from the policy model). The security
target forms the basis for testing and evaluation of a product.

A protection profile is like a security target but expressed in an implementation-
independent way to enable comparable evaluations across products and versions. This
can involve the use of a semi-formal language or at least of suitable security jargon. A
protection profile is a requirement for products that are to be evaluated under the
Common Criteria [574] (I discuss the Common Criteria in Part 3; they are associated
with a scheme used by many governments for mutual recognition of security evalua-
tions of defense information systems).

When I don’t have to be so precise, I may use the phrase ‘security policy’ to refer to
any or all of the above. I will never use the term to refer to a collection of platitudes.

Sometimes, we are confronted with a completely new application, and have to de-
sign a security policy model from scratch. More commonly, a model already exists; we
just have to choose the right one, and develop it into a security target. Neither of these
steps is easy. Indeed, one of the purposes of this section is to provide a number of se-
curity policy models, describe them in the context of real systems, and examine the
engineering mechanisms (and associated constraints) that a security target can use to
meet them.

Finally, there is a third usage of the phrase ‘security policy,’ to mean a list of spe-
cific configuration settings for some protection product. I will refer to this as configu-
ration management or, occasionally, as trusted configuration management, in what
follows.

7.3 The Bell-LaPadula Security Policy Model

The best-known example of a security policy model was proposed by David Bell and
Len LaPadula in 1973, in response to U.S. Air Force concerns over the security of
time-sharing mainframe systems. By the early 1970s, people had realized that the pro-
tection offered by many commercial operating systems was poor, and was not getting
any better. As soon as one operating system bug was fixed, some other vulnerability
would be discovered. (Modern reliability growth models can quantify this and confirm
that the pessimism was justified; I discuss them further in Section 23.2.4). There was
the constant worry that even unskilled users would discover loopholes, and use them
opportunistically; there was also a keen and growing awareness of the threat from ma-
licious code. There was a serious scare when it was discovered that the Pentagon’s
World Wide Military Command and Control System was vulnerable to Trojan Horse
attacks; this had the effect of restricting its use to people with a ‘Top Secret’ clearance,

Chapter 7: Multilevel Security

140

which was inconvenient. Finally, academic and industrial researchers were coming up
with some interesting new ideas on protection, which we’ll discuss below.

A study by James Anderson led the U.S. government to conclude that a secure sys-
tem should do one or two things well; and that these protection properties should be
enforced by mechanisms that were simple enough to verify and that would change only
rarely [16]. It introduced the concept of a reference monitor, a component of the oper-
ating system that would mediate access control decisions and be small enough to be
subject to analysis and tests, the completeness of which could be assured. In modern
parlance, such components—together with their associated operating proce-
dures—make up the Trusted Computing Base (TCB). More formally, the TCB is de-
fined as the set of components (hardware, software, human, etc.) whose correct
functioning is sufficient to ensure that the security policy is enforced, or, more vividly,
whose failure could cause a breach of the security policy. The Anderson report’s goal
was to make the security policy simple enough for the TCB to be amenable to careful
verification.

But what are these core security properties that should be enforced above all others?

7.3.1 Classifications and Clearances

World War II, and the Cold War that followed, led NATO governments to move to a
common protective marking scheme for labelling the sensitivity of documents. Classi-
fications are labels, which run upward from Unclassified through Confidential, Secret,
and Top Secret. The details change from time to time. The original idea was that in-
formation whose compromise could cost lives was marked ‘Secret’ while information
whose compromise could cost many lives was ‘Top Secret’. Government employees
have clearances depending on the care with which they’ve been vetted; in the United
States, for example, a ‘Secret’ clearance involves checking FBI fingerprint files, while
‘Top Secret’ also involves background checks for the previous 5 to 15 years’ employ-
ment [244].

The access control policy was simple: an official could read a document only if his
clearance was at least as high as the document’s classification. So an official cleared to
‘Top Secret’ could read a ‘Secret’ document, but not vice versa. The effect is that in-
formation may only flow upward, from Confidential to Secret to Top Secret (see Fig-
ure 7.2), but it may never flow downward unless an authorized person takes a
deliberate decision to declassify it.

There are also document-handling rules; thus, a ‘Confidential’ document might be
kept in a locked filing cabinet in an ordinary government office, while higher levels
may require safes of an approved type, guarded rooms with control over photocopiers,
and so on. (The NSA security manual [582] gives a summary of the procedures used
with ‘Top Secret’ intelligence data.)

Figure 7.2 Multilevel security.

Security Engineering: A Guide to Building Dependable Distributed Systems

141

The system rapidly became more complicated. The damage criteria for classifying
documents were expanded from possible military consequences to economic harm and
even political embarrassment. Britain has an extra level, ‘Restricted’, between ‘Un-
classified’ and ‘Confidential’; the United States had this, too, but abolished it after the
Freedom of Information Act was passed. America now has two more specific mark-
ings: ‘For Official Use only’ (FOUO) refers to unclassified data that can’t be released
under the Freedom of Information Act (FOIA), while ‘Unclassified but Sensitive’ in-
cludes FOUO plus material that might be released in response to a FOIA request. In
Britain, restricted information is in practice shared freely, but marking everything ‘Re-
stricted’ allows journalists and others involved in leaks to be prosecuted under Official
Secrets law. (Its other main practical effect is that an unclassified U.S. document sent
across the Atlantic automatically becomes ‘Restricted’ in Britain, and then ‘Confiden-
tial’ when shipped back to the United States. American military system builders com-
plain that the U.K. policy breaks the U.S. classification scheme!)

There is also a system of codewords whereby information, especially at Secret and
above, can be further restricted. For example, information that might contain intelli-
gence sources or methods—such as the identities of agents or decrypts of foreign gov-
ernment traffic—is typically classified ‘Top Secret Special Compartmented
Intelligence,’ or TS/SCI, which means that so-called need-to-know restrictions are im-
posed as well, with one or more codewords attached to a file. Some of the codewords
relate to a particular military operation or intelligence source, and are available only to
a group of named users. To read a document, a user must have all the codewords that
are attached to it. A classification label, plus a set of codewords, makes up a security
category or (if there’s at least one codeword) a compartment, which is a set of records
with the same access control policy. I discuss compartmentation in more detail in the
next Chapter 8.

There are also descriptors, caveats, and IDO markings. Descriptors are words such
as ‘Management’, ‘Budget’, and ‘Appointments’: they do not invoke any special han-
dling requirements, so we can deal with a file marked ‘Confidential—Management’ as
if it were simply marked ‘Confidential’. Caveats are warnings, such as “U.K. Eyes
Only,” or the U.S. equivalent, ‘NOFORN’; there are also International Defense Orga-
nization (IDO) markings such as ‘NATO’. The lack of obvious differences between
codewords, descriptors, caveats, and IDO marking is one of the factors that can make
the system confusing. (A more detailed explanation can be found in [630].)

The final generic comment about access control doctrine is that allowing upward-
only flow of information also models what happens in wiretapping. In the old days,
tapping someone’s telephone meant adding a physical wire at the exchange; nowadays,
it’s all done in the telephone exchange software, and the effect is somewhat like mak-
ing the target calls into conference calls with an extra participant. The usual security
requirement is that the target of investigation should not know he is being wiretapped,
so the third party should be silent—and its very presence must remain unknown to the
target. For example, now that wiretaps are usually implemented as silent conference
calls, care has to be taken to ensure that the charge for the conference call facility goes
to the wiretapper, not to the target. Wiretapping requires an information flow policy in
which the ‘High’ principal can see ‘Low’ data, but a ‘Low’ principal can’t tell whether
‘High’ is reading any data, and if so what.

Chapter 7: Multilevel Security

142

7.3.2 Information Flow Control

It was in the context of the classification of military and intelligence data that the Bell-
LaPadula (BLP) model of computer security was formulated in 1973 by David Bell
and Len LaPadula [86]. It is also known as multilevel security; systems that implement
it are often called multilevel secure, or MLS, systems. Their basic property is that in-
formation cannot flow downward.

More formally, the Bell-LaPadula model enforces two properties:

• The simple security property: no process may read data at a higher level. This
is also known as no read up (NRU);

• The *-property: no process may write data to a lower level. This is also known
as no write down (NWD).

The *-property was Bell and LaPadula’s critical innovation. It was driven by the fear
of attacks using malicious code. An uncleared user might write a Trojan and leave it
around where a system administrator cleared to ‘Secret’ might execute it; it could then
copy itself into the ‘Secret’ part of the system, read the data there and try to signal it
down somehow. It’s also quite possible that an enemy agent could get a job at a com-
mercial software house and embed some code in a product that would look for secret
documents to copy. If it could then copy them down to where its creator could read it,
the security policy would have been violated. Information might also be leaked as a
result of a bug, if applications could write down.

Vulnerabilities such as malicious and buggy code are assumed to be given. It is
therefore necessary for the system to enforce the security policy independently of user
actions (and, by extension, of the actions taken by programs run by users). So we must
prevent programs running at ‘Secret’ from writing to files at ‘Unclassified’; or, more
generally, prevent any process at High from signalling to any object (or subject) at
Low. In general, when systems are built to enforce a security policy independently of
user actions, they are described as having mandatory access control, as opposed to the
discretionary access control in systems such as Unix where users can take their own
access decisions about their files. (I won’t use these phrases much, as they traditionally
refer only to BLP-type policies and don’t include many other policies whose rules are
just as mandatory).

The Bell-LaPadula model makes it relatively straightforward to verify claims about
the protection provided by a design. Given both the simple security property (no read
up), and the star property (no write down), various results can be proved about the ma-
chine states that can be reached from a given starting state, and this simplifies formal
analysis.

There are some elaborations, such as a trusted subject, a principal who is allowed to
declassify files. To keep things simple, I’ll ignore this; I’ll also ignore the possibility
of incompatible security levels for the time being, and return to them in the next chap-
ter. Finally, in order to simplify matters still further, I will assume from now on that
the system has only two levels, High and Low (unless there is some particular reason
to name individual compartments).

Multilevel security can be implemented in a number of ways. The textbook mecha-
nism is to implement a reference monitor by beefing up the part of an operating system
that supervises all operating system calls and checks access permissions to decide
whether the call can be serviced or not. In practice, things get much more complex as

Security Engineering: A Guide to Building Dependable Distributed Systems

143

it’s hard to build systems whose trusted computing base is substantially less than the
whole operating system kernel (plus quite a number of its utilities).

Another approach that has been gaining ground as hardware costs have fallen is to
replicate systems. One might, for example, have one database at Low and another at
High, with a pump that constantly copies information from Low up to High. I’ll discuss
pumps in more detail later.

7.3.3 Standard Criticisms of Bell-LaPadula

The introduction of BLP caused some excitement: here was a straightforward security
policy that was clear to the intuitive understanding, yet still allowed people to prove
theorems. But John McLean showed that the BLP rules were not in themselves enough.
He introduced System Z, defined as a BLP system with the added feature that a user
can ask the system administrator to temporarily declassify any file from High to Low.
In this way, Low users can read any High file without breaking the BLP assumptions.

Bell’s argument was that System Z cheats by doing something the model doesn’t
allow (changing labels isn’t a valid operation on the state), and McLean’s argument
was that it didn’t explicitly tell him so. The issue is dealt with by introducing a tran-
quility property. The strong tranquility property says that security labels never cnange
during system operation, while the weak tranquility property says that labels never
change in such a way as to violate a defined security policy.

The motivation for the weak property is that in a real system we often want to ob-
serve the principle of least privilege, and start a process at the uncleared level, even if
the owner of the process were cleared to ‘Top Secret’. If she then accesses a confiden-
tial email, that session is automatically upgraded to ‘Confidential’; and in general, her
process is upgraded each time it accesses data at a higher level (this is known as the
high water mark principle). As subjects are usually an abstraction of the memory man-
agement subsystem and file handles, rather than processes, this means that state
changes when access rights change, rather than when data actually moves.

The practical implication of this is that a process accumulates the security label or
labels of every file that it reads, and these become the default label set of every file
that it writes. So a process that has read files at ‘Secret’ and ‘Crypto’ will thereafter
create files marked (at least) ‘Secret Crypto’. This will include temporary copies made
of other files. If it then reads a file at ‘Top Secret Daffodil’, all files it creates after that
will be labelled ‘Top Secret Crypto Daffodil’, and it will not be able to write to any
temporary files at ‘Secret Crypto.’ The effect this has on applications is one of the se-
rious complexities of multilevel security; most application software needs to be re-
written (or at least modified) to run on MLS platforms.

Finally it’s worth noting that even with this refinement, BLP still doesn’t deal with
the creation or destruction of subjects or objects (which is one of the hard problems of
building a real MLS system).

7.3.4 Alternative Formulations

Multilevel security properties have been expressed in many other ways. The first mul-
tilevel security policy was a version of high water mark written in 1967–8 for the
ADEPT-50, a mandatory access control system developed for the IBM S/360 main-
frame [798]. This used triples of level, compartment and group, with the groups being
files, users, terminals, and jobs. As programs (rather than processes) were subjects, it

Chapter 7: Multilevel Security

144

was vulnerable to Trojan horse compromises, and it was more complex than need be.
Nonetheless, it laid the foundation for BLP, and also led to the current IBM S/390
mainframe hardware security architecture [394].

Shortly thereafter, a number of teams produced primitive versions of the lattice
model, which I’ll discuss in more detail in Chapter 8, Section 8.2.1. These also made a
significant contribution to the Bell-LaPadula work, as did Honeywell engineers work-
ing on Multics—which led to a system called SCOMP, which I’ll discuss in Section 7
below.

Noninterference was introduced by Joseph Goguen and Jose Meseguer in 1982
[339]. In a system with this property, High’s actions have no effect on what Low can
see. Nondeducibility is less restrictive and was introduced by Sutherland in 1986 [743].
Here the idea is to try and prove that Low cannot deduce anything with 100 percent
certainty about High’s input. Low users can see High actions, just not understand them;
a more formal definition is that any legal string of high-level inputs is compatable with
every string of low-level events. So for every trace Low can see, there’s a similar trace
that didn’t involve High input. But different low-level event streams may require
changes to high-level outputs or reordering of high-level/low-level event sequences.

The motive for nondeducibility is to find a model that can deal with applications
such as a LAN on which there are machines at both Low and High, with the High ma-
chines encrypting their LAN traffic. (A lot more is needed to do this right, from pad-
ding the High traffic with nulls so that Low users can’t do traffic analysis, and even
ensuring that the packets are the same size—see [659] for an early example of such a
system.)

Nondeducibility has historical importance, as it was the first nondeterministic ver-
sion of Goguen and Meseguer’s ideas. But it is hopelessly weak. There’s nothing to
stop Low making deductions about High input with 99 percent certainty. There are also
a whole lot of problems when we are trying to prove results about databases; we have
to take into account any information that can be inferred from data structures (such as
from partial views of data with redundancy), as well as consider the traces of executing
programs. I’ll discuss these problems further in Chapter 8, Section 8.3.

Improved models include generalized noninterference and restrictiveness. The for-
mer is the requirement that if one alters a high-level input event in a legal sequence of
system events, the resulting sequence can be made legal by, at most, altering one or
more subsequent high-level output events. The latter adds a further restriction on the
part of the trace, where the alteration of the high-level outputs can take place. This is
needed for technical reasons, to ensure that two systems satisfying the restrictiveness
property can be composed into a third, which also does. (See [540] which explains
these issues.)

The Harrison-Ruzzo-Ullman model tackles the problem of how to deal with the
creation and deletion of files, an issue on which BLP is silent. It operates on access
matrices and verifies whether there is a sequence of instructions that causes an access
right to leak to somewhere it was initially not present [373]. This is more expressive
than BLP, but more complex and thus less tractable as an aid to verification.

John Woodward proposed a compartmented mode workstation (CMW) policy, which
attempted to model the classification of information using floating labels, as opposed
to the fixed labels associated with BLP [809, 351]. It was ultimately unsuccessful, be-
cause labels tend to either float up too far too fast (if done correctly), or they float up
more slowly (but don’t block all the opportunities for malicious information flow).

Security Engineering: A Guide to Building Dependable Distributed Systems

145

However, CMW ideas have led to real products—albeit products that provide separa-
tion more than information sharing.

The type enforcement model, due to Earl Boebert and Richard Kain [122] and later
extended by Lee Badger and others [66], assigns each subject to a domain, and each
object to a type. There is a domain definition table (DDT), which acts as an access
control matrix between domains and types. This is a natural model in the Unix setting,
as types can often be mapped to directory structures. It is more general than policies
such as BLP, as it starts to deal with integrity as well as confidentiality concerns.

Finally, the policy model getting the most attention at present from researchers is
role-based access control (RBAC), introduced by David Ferraiolo and Richard Kuhn
[291]. This sets out to provide a more general framework for mandatory access control
than BLP in which access decisions don’t depend on users’ names but on the functions
they are currently performing within the organization. Transactions that may be per-
formed by holders of a given role are specified, then mechanisms for granting member-
ship of a role (including delegation). Roles, or groups, had for years been the
mechanism used in practice in organizations such as banks to manage access control;
the RBAC model starts to formalize this. It can deal with integrity issues as well as
confidentiality, by allowing role membership (and thus access rights) to be revised
when certain programs are invoked. Thus, for example, a process calling untrusted
software that had been downloaded from the Net might lose the role membership re-
quired to write to sensitive system files.

7.3.5 The Biba Model

Many textbooks mention in passing a model due to Ken Biba [100], which is often re-
ferred to as “Bell-LaPadula upside down.” It deals with integrity alone and ignores
confidentiality entirely. The key observation is that confidentiality and integrity are in
some sense dual concepts: confidentiality is a constraint on who can read a message,
while integrity is a constraint on who may have written or altered it.

As a concrete application, an electronic medical device such as an ECG may have
two separate modes: calibration and use. The calibration data must be protected from
being corrupted by normal users, who will therefore be able to read it but not write to
it; when a normal user resets the device, it will lose its current user state (i.e., any pa-
tient data in memory) but the calibration will remain unchanged.

To model such a system, we can build a multilevel integrity policy with the rules
that we must only read up (i.e., a user process can read the calibration data) and write
down (i.e., a calibration process can write to a buffer in a user process); but we must
never read down or write up, as either could allow High-integrity objects to become
contaminated with Low—that is, potentially unreliable—data. The Biba model is often
formulated in terms of the low water mark principle, which is the dual of the high wa-
ter mark principle already discussed: the integrity of an object is the lowest level of all
the objects that contributed to its creation.

This was the first formal model of integrity. A surprisingly large number of real
systems work along Biba lines. For example, the passenger information system in a
railroad may get information from the signaling system, but certainly shouldn’t be able
to affect it (other than through a trusted interface, such as one of the control staff).
However, few of the people who build such systems are aware of the Biba model or
what it might teach them.

Chapter 7: Multilevel Security

146

One interesting exception is LOMAC, an extension to Linux that implements a low
water mark policy [313]. It is designed to deal with the problem of malicious code ar-
riving somehow over the Net. The system provides two levels—high and low integ-
rity—with system files at High and the network at Low. As soon as a program (such as
a demon) receives traffic from the network, it is automatically downgraded to Low.
Thus, even if the traffic contains an attack that succeeds in forking a root shell, this
shell won’t have the capability to write to the password file, for example, as a normal
root shell would. As one might expect, a number of system tasks (such as logging) be-
come tricky and require trusted code. Note, though, that this approach merely stops the
malware getting root access; it doesn’t stop it infecting the Low compartment and us-
ing it as a springboard from which to spread elsewhere.

As mentioned above, integrity concerns can also be dealt with by the type enforce-
ment and RBAC models. However, in their usual forms, they revise a principal’s
privilege when an object, is invoked, while low watermark revises it when an object is
read. The latter policy is more prudent where we are concerned with attacks exploiting
code that is not formally invoked but simply read (as with buffer overflow attacks con-
ducted by “data” read from the Internet).

I will introduce more complex models when I discuss banking and bookkeeping
systems in Chapter 9; these are more complex in that they retain security state in the
form of dual control mechanisms, audit trails, and so on.

7.4 Examples of Multilevel Secure Systems

Following some research products in the late 1970s (such as KSOS [99], a kernelized
secure version of Unix), products that implemented multilevel security policies started
arriving in dribs and drabs in the early 1980s. By about 1988, a number of companies
had started implementing MLS versions of their operating systems. MLS concepts
were extended to all sorts of products.

7.4.1 SCOMP

One of the most important products was the Secure Communications Processor
(SCOMP), a Honeywell derivative of Multics, launched in 1983 [311]. This was a no-
expense-spared implementation of what the U.S. Department of Defense believed it
wanted for handling messaging at multiple levels of classification. SCOMP had for-
mally verified hardware and software, with a minimal kernel and four rings of protec-
tion (rather than Multics’ seven) to keep things simple. Its operating system, STOP,
used these rings to maintain up to 32 separate compartments, and to allow appropriate
one-way information flows between them.

SCOMP was used in applications such as military mail guards, specialized firewalls
that typically allow mail to pass from Low to High, but not vice versa [234]. (In gen-
eral, a device that makes information flow one way only is known as a data diode.)
SCOMP’s successor, XTS-300, supports C2G, the Command and Control Guard. This
is used in the time-phased force deployment data (TPFDD) system whose function is to
plan U.S. troop movements and associated logistics. Overall, military plans are devel-
oped as TPFDDs, at a high classification level, then distributed at the appropriate times
as commands to lower levels for implementation. The deliberate downgrading of high

Security Engineering: A Guide to Building Dependable Distributed Systems

147

information raises a number of issues, some of which I’ll deal with later. (In the case
of TPFDD, the guard examines the content of each record before deciding whether to
release it.)

SCOMP’s most significant contribution was to serve as a model for the Orange
Book [240], also known as the Trusted Computer Systems Evaluation Criteria
(TCSEC). This was the first systematic set of standards for secure computer systems,
being introduced in 1985 and finally retired in December 2000. Although it has since
been replaced by the Common Criteria, the Orange Book was enormously influential,
not just in the United States but among allied powers; countries such as Britain, Ger-
many, and Canada based their own national standards on it, and these national stan-
dards were finally subsumed into the Common Criteria [574].

The Orange Book allowed systems to be evaluated at a number of levels, with A1
being the highest, and moving down through B3, B2, B1, and C2 to C1. SCOMP was
the first system to be rated A1. It was also extensively documented in the open litera-
ture. Being first, and being fairly public, it set the standard for the next generation of
military systems. This standard has rarely been met since; in fact, the XTS-300 has
been evaluated only to B3 (the formal proofs of correctness required for an A1 evalua-
tion were dropped).

7.4.2 Blacker

Blacker was a series of encryption devices designed to incorporate MLS technology.
Previously, encryption devices were built with separate processors for the ciphertext,
or Black, end, and the cleartext, or Red, end. Various possible failures can be prevented
if one can coordinate the Red and Black processing. One can also make the device
simpler, and provide greater operational flexibility: the device isn’t limited to separat-
ing two logical networks, but can provide encryption and integrity assurance selec-
tively, and interact in useful ways with routers. But a high level of assurance is
required that the ‘Red’ data won’t leak out via the ‘Black’.

Blacker entered service in 1989, and the main lesson learned from it was the extreme
difficulty of accommodating administrative traffic within a model of classification lev-
els [799]. As late as 1994, it was the only communications security device with an A1
evaluation [97]. So it too had an effect on later systems. It was not widely used though,
and its successor (the Motorola Network Encryption System), which is still in use, has
only a B2 evaluation.

7.4.3 MLS Unix, CMWs, and Trusted Windowing

Most of the available MLS systems are modified versions of Unix, and an example is
AT&T’s System V/MLS [15]. This added security levels and labels, initially by using
some of the bits in the group ID record, and later by using this to point to a more
elaborate structure. This enabled MLS properties to be introduced with minimal
changes to the system kernel. Other products of this kind included Secure Ware (and
its derivatives, such as SCO and HP VirtualVault) and Addamax.

Chapter 7: Multilevel Security

148

Compartmented mode workstations (CMWs) allow data at different levels to be
viewed and modified at the same time by a human operator, and ensure that labels at-
tached to the information are updated appropriately. The initial demand came from the
intelligence community, whose analysts may have access to ‘Top Secret’ data, such as
decrypts and agent reports, and produce reports at the ‘Secret’ level for users such as
political leaders and officers in the field. As these reports are vulnerable to capture,
they must not contain any information that would compromise intelligence sources and
methods.

CMWs allow an analyst to view the ‘Top Secret’ data in one window, compose a re-
port in another, and have mechanisms to prevent the accidental copying of the former
into the latter (i.e., cut-and-paste works from ‘Secret’ to ‘Top Secret’, but not vice
versa). CMWs have proved useful in operations, logistics, and drug enforcement as
well [396].

For the engineering issues involved in doing mandatory access control in windowing
systems, see [273,274], which describe a prototype for Trusted X, a system imple-
menting MLS but not information labelling. It runs one instance of X Windows per
sensitivity level, and has a small amount of trusted code that allows users to cut and
paste from a lower level to a higher one. For the specific architectural issues with
Sun’s CMW product, see [281].

7.4.4 The NRL Pump

It was soon realized that simple mail guards and crypto boxes were too restrictive, as
many more networked services were developed besides mail. Traditional MLS mecha-
nisms (such as blind write-ups and periodic read-downs) are inefficient for real-time
services.

Figure 7.3 The NRL pump.

The US Naval Research Laboratory (NRL) therefore developed the Pump (see Fig-
ure 7.3), a one-way data transfer device (a data diode) using buffering to allow one-
way information flow while limiting the bandwidth of possible backward leakage by a
number of mechanisms such as timing randomization of acknowledgment messages
[434,436,437]. The attraction of this approach is that it is possible to build MLS sys-

Security Engineering: A Guide to Building Dependable Distributed Systems

149

tems by using pumps to connect separate systems at different security levels. As these
systems don’t process data at more than one level, they can be built from cheap com-
mercial-off-the-shelf (COTS) components [438]. As the cost of hardware falls, this
becomes the preferred option where it’s possible.

The Australian government has developed a product called Starlight that uses pump-
type technology married to a keyboard switch to provide a nice MLS-type windowing
system (albeit without any visible labels), using a bit of trusted hardware that connects
the keyboard and mouse with High and Low systems [17]. There is no trusted software.
It’s been integrated with the NRL Pump. A number of semi-commercial data diode
products have also been introduced.

7.4.5 Logistics Systems

Military stores, like government documents, can have different classification levels.
Some signals intelligence equipment is ‘Top Secret’, while things like jet fuel and
bootlaces are not; but even such simple commodities may become ‘Secret’ when their
quantities or movements might leak information about tactical intentions. There are
also some peculiarities. For example, an inertial navigation system classified ‘Confi-
dential’ in the peacetime inventory might contain a laser gyro platform classified ‘Se-
cret’ (thus security levels are nonmonotonic).

The systems needed to manage all this seem to be hard to build, as MLS logistics
projects in both the United States and Britain have ended up as expensive disasters.
The Royal Air Force’s Logistics Information Technology System (LITS) was a 10-year
(1989–1999), $500 million project to provide a single stores management system for
the RAF’s 80 bases [571]. It was designed to operate on two levels: ‘Restricted’ for the
jet fuel and boot polish, and ‘Secret’ for special stores such as nuclear bombs. It was
initially implemented as two separate database systems connected by a pump to en-
force the MLS property. The project became a classic tale of escalating costs driven by
creeping requirements changes. One of these changes was the easing of classification
rules at the end of the Cold War. As a result, it was found that almost all the ‘Secret’
information was now static (e.g., operating manuals for air-drop nuclear bombs, which
are now kept in strategic stockpiles rather than at airbases). To save money, the ‘Se-
cret’ information is now kept on a CD and locked up in a safe.

Logistics systems often have application security features too. The classic example
is that ordnance control systems alert users who are about to breach safety rules by
putting explosives and detonators in the same truck or magazine [563].

7.4.6 Purple Penelope

In recent years, most governments’ information security agencies have been unable to
resist user demands to run standard applications (such as MS Office), which are not
available for multilevel secure platforms. One response is ‘Purple Penelope’. This
software, from Britain’s Defence Evaluation and Research Agency, puts an MLS
wrapper round a Windows NT workstation. It implements the high water mark version
of BLP, displaying in the background the current security level of the device, and up-
grading it when necessary as more sensitive resources are read. It ensures that the re-
sulting work product is labelled correctly.

Rather than preventing users from downgrading, as a classical BLP system might do,
it allows them to assign any security label they like to their output. However, if this

Chapter 7: Multilevel Security

150

involves a downgrade, it requires the user to confirm the release of the data using a
trusted path interface, thus ensuring no Trojan or virus can release anything completely
unnoticed. Of course, a really clever malicious program can piggyback classified mate-
rial on stuff that the user does wish to release, so there are other tricks to make that
harder. There is also an audit trail to provide a record of all downgrades, so that errors
and attacks (whether by users or by malicious code) can be traced after the fact [620].

7.4.7 Future MLS Systems

The MLS industry sees an opportunity in using its products as platforms for firewalls,
Web servers, and other systems that are likely to come under attack. Thanks to the con-
siderable effort that has often gone into finding and removing security vulnerabilities,
MLS platforms can give more assurance than commodity operating systems that, even
if the firewall or Web server software is hacked, the underlying operating system is
unlikely to be. The usual idea is to use the MLS platform to separate trusted from un-
trusted networks, then introduce simple code to bypass the separation in a controlled
way. In fact, one of the leading firewall vendors (TIS) was until recently focused on
developing MLS operating systems, while Secure Computing Corporation, Cyber-
guard, and Hewlett-Packard have all offered MLS-based firewall products. The long
tradition of using MLS systems as pumps and mail guards means that firewall issues
are relatively well understood in the MLS community. (A typical design is described in
[162].)

However, the BLP controls do not provide enough of a protection benefit in many
commercial environments to justify their high development costs, and widely fielded
products are often better because of the evolution that results from large-scale user
feedback. We find, for example, two firewall products from the same corporation, do-
ing much the same thing, with one of them MLS (the Standard Mail Guard) and the
other based on open source code and aimed at commercial markets (Sidewinder). Ac-
cording to users, the former has “never been able to hold a candle to the latter.”

Perhaps the real future of multilevel systems is not in confidentiality, but integrity.
Many fielded systems implement some variant of the Biba model (even though their
designers may never have heard the word “Biba”). In an electricity utility, for example,
the critical operational systems such as power dispatching should not be affected by
any others; they can be observed by, but not influenced by, the billing system. Simi-
larly, the billing system and the power dispatching system both feed information into
the fraud detection system, and so on, until at the end of the chain we find the execu-
tive information systems, which can observe everything (or at least, summaries of eve-
rything) while having no direct effect on operations.

Researchers are now starting to build models that accommodate both confidentiality
and integrity to observe their interaction and workout how they might apply in envi-
ronments such as smartcards [440]. Another topic is how mandatory access control
models can provide real-time performance guarantees to help prevent service denial
attacks [552]. It’s already clear that many of the lessons learned in multilevel confi-
dentiality systems also go across. So do a number of the failure modes, which I discuss
in the next section.

Security Engineering: A Guide to Building Dependable Distributed Systems

151

7.5 What Goes Wrong

As I’ve frequently pointed out, engineers learn more from the systems that fail than
from those that succeed, and MLS systems have certainly been an effective teacher.
The large effort expended in building systems to follow a simple policy with a high
level of assurance has led to the elucidation of many second- and third-order conse-
quences of information flow controls. I’ll start with the more theoretical and work
through to the business and engineering end.

7.5.1 Composability

Consider a simple device that accepts two High inputs H1 and H2, multiplexes them,
encrypts them by xor’ing them with a one-time pad (i.e., a random generator), outputs
the other copy of the pad on H3, and outputs the ciphertext, which being encrypted with
a cipher system giving perfect secrecy, is considered to be Low (output L). This is
shown in Figure 7.4.

In isolation, this device is provably secure. But if feedback is permitted, then the
output from H3 can be fed back into H2, with the result that the high input H1 now ap-
pears at the low output L.

Timing inconsistencies can also lead to the composition of two secure systems being
insecure (see for example McCullough [534]). Simple information flow doesn’t com-
pose; neither does noninterference or nondeducibility. In general, the problem of how
to compose two or more secure components into a secure system is hard, even at the
relatively uncluttered level of proving results about ideal components. Most of the
problems arise when some sort of feedback is introduced into the system; without it,
composition can be achieved under a number of formal models [541]. However, in real
life, feedback is pervasive, and composition of security properties can be complicated
by detailed interface issues, feature interactions, and so on.

Figure 7.4 Insecure composition of secure systems with feedback.

Finally, the composition of components that have been designed in accordance with
two different security policies is harder still. This is bad enough for different variants
on the BLP theme but even worse when one of the policies is of a non-BLP type, as we
will encounter in the following two chapters.

Chapter 7: Multilevel Security

152

7.5.2 The Cascade Problem

An example of the difficulty of composing multilevel secure systems is given by the
cascade problem (Figure 7.5). After the Orange Book introduced a series of graduated
evaluation levels, this led to rules about the number of levels a system can span. For
example, a system evaluated to B3 is in general allowed to process information for us-
ers with a clearance level of Unclassified through Secret, or of Confidential through
Top Secret, but not to process Top Secret data with some users restricted to Unclassi-
fied only [244].

As the diagram shows, it is straightforward to connect two A1 systems in such a way
that this security policy is broken. The first system connects Unclassified and Secret;
and its Secret level communicates with the second system, which also processes Top
Secret information. (The problem is discussed in more detail in [391].) It illustrates
another kind of danger that formal models of security (and practical implementations)
must take into account.

Figure 7.5 The cascade problem.

7.5.3 Covert Channels

One of the reasons these span limits are imposed on multilevel systems emerges from a
famous—and extensively studied—problem: the covert channel. First pointed out by
Butler Lampson in 1973 [488], a covert channel is a mechanism that, though not de-
signed for communication, can nonetheless be abused to allow information to be com-
municated down from High to Low.

Security Engineering: A Guide to Building Dependable Distributed Systems

153

A typical covert channel arises when a High process can signal to a Low process by
affecting some shared resource. For example, it could position the disk head at the out-
side of the drive at time ti to signal that the i-th bit in a High file was a 1, and position
it at the inside to signal that the bit was a 0.

All systems with shared resources must find a balance between covert channel ca-
pacity, resource utilization, and fairness. If a machine is shared between High and
Low, and resources are not allocated in fixed slices, then the High process can signal
by filling up the disk drive, or by using a lot of CPU or bus cycles (some people call
the former case a storage channel and the latter a timing channel, though in practice
they can often be converted into each other). There are many others, such as sequen-
tial-process IDs, shared file locks, and last access times on files; reimplementing all of
these in a multilevel secure way is an enormous task. Various strategies have been
adopted to minimize their bandwidth. For example, we can arrange that the scheduler
assigns a fixed disk quota to each level, and reads the boot sector each time control is
passed downward; we might also allocate a fixed proportion of the available time slices
to processes at each level, and change these proportions infrequently. Each change
might allow one or more bits to be signalled, but such strategies can significantly re-
duce the available bandwidth. (A more complex multilevel design, which uses local
schedulers at each level, plus a global scheduler to maintain overall consistency, is de-
scribed in [435].)

It is also possible to limit the covert channel capacity by introducing noise. Some
machines have had randomized system clocks for this purpose. But some covert chan-
nel capacity almost always remains. (Techniques to analyze the trade-offs between
covert channel capacity and system performance are discussed in [353].)

Covert channels also occur at the application layer. A medical example is that, in
Britain, personal health information derived from visits to genitourinary medicine
(GUM) clinics is High in the sense that it can’t be shared with the patient’s normal
doctor and thus won’t appear in their normal medical record (Low) unless the patient
consents. In one case, a woman’s visit to a GUM clinic “leaked” when the insurer
failed to recall her for a smear test, which her normal doctor knew was due [551]. The
insurer knew that a smear test had been done already by the clinic, and didn’t want to
pay twice. (Some people might say this was a failure of polyinstantiation, which I dis-
cuss in 7, or an inference attack, which I’ll come to in Chapter 8, Section 8.3.)

The worst case known to me as far as bandwidth is concerned is also a feature of a
specific application. It occurs in large early-warning radar systems, where High—the
radar processor—controls hundreds of antenna elements that illuminate Low—the tar-
get—with high-speed pulse trains that are modulated with pseudorandom noise to
make jamming harder. In this case, the radar code must be trusted, as the covert chan-
nel bandwidth is many megabits per second.

The case of greatest general interest is multilevel integrity systems, such as banking
and utility billing, where a programmer who has inserted Trojan code in a high-
integrity bookkeeping system can turn off the billing to an account by a certain pattern
of behavior (in a phone system he might call three numbers in succession, for exam-
ple). Code review is the only real way to block such attacks, though balancing controls
can also help (I discuss this in Chapter 9).

Chapter 7: Multilevel Security

154

The best that developers have been able to do consistently with covert channel
bandwidth in time-sharing multilevel operating systems is to limit it to one bit per sec-
ond or so. (That is now the DoD target [241]; techniques for doing a systematic analy-
sis may be found in [448].) One bit per second may be tolerable in an environment
where we wish to prevent large TS/SCI files—such as satellite photographs—leaking
down from TS/SCI users to ‘Secret’ users, and is much less than the rate at which ma-
licious code might hide data in outgoing traffic that would be approved by a guard.
However, it is inadequate if we want to prevent the leakage of a cryptographic key.
This is one of the reasons for the military doctrine of doing crypto in special-purpose
hardware rather than in software. It also explains why span limits are relaxed for
closed security environments—systems in which application code can be introduced
only by suitably cleared personnel (and where “system applications are adequately
protected against the insertion of malicious logic”); in such a case, an A1 system is
allowed to process both Top Secret and Unclassified data simultaneously [244].

7.5.4 The Threat from Viruses

The vast majority of viruses are found in mass-market products such as PCs and Macs.
However, the defense computer community was shocked when Fred Cohen used vi-
ruses to penetrate multilevel secure systems easily in 1983. In his first experiment, a
file virus which took only eight hours to penetrate a system previously believed to be
multilevel secure [192].

There are a number of ways in which viruses and other malicious code can be used
to perform such attacks. If the reference monitor (or other TCB components) can be
corrupted, a virus could deliver the entire system to the attacker, for example by issu-
ing him with an unauthorized clearance. This is why slightly looser rules apply to
closed security environments. But even if the TCB remains intact, the virus could still
use any available covert channel to signal information down.

In many cases, a TCB will provide some protection against viral attacks, as well as
against careless disclosure by users or application software—which is often more im-
portant than malicious disclosure. However, the main effect of viruses on military
doctrine has been to strengthen the perceived case for multilevel security. The argu-
ment goes that, even if personnel can be trusted, one cannot rely on technical measures
short of total isolation to prevent viruses moving up the system, so one must do what-
ever is reasonably possible to stop them signalling back down.

7.5.5 Polyinstantiation

Another problem that has much exercised the research community is polyinstantiation.
Suppose that our High user has created a file named agents, and that our Low user now
tries to do the same. If the MLS operating system prohibits this, it will have leaked
information—namely, that there is a file called agents at High. But if it doesn’t, it will
now have two files with the same name.

Security Engineering: A Guide to Building Dependable Distributed Systems

155

Figure 7.6 How the United States deals with classified data.

Figure 7.7 How Britain deals with classified data.

Often, we can solve the problem by a naming convention, which could be as simple
as giving Low and High users different directories. But the problem remains a hard one
for databases [669]. Suppose that a High user allocates a classified cargo to a ship. The
system will not divulge this information to a Low user, who might think the ship is
empty, and try to allocate it another cargo or even to change its destination.

The solution favored in the United States for such systems is that the High user allo-
cates a Low cover story at the same time as the real High cargo. Thus, the underlying
data will look something like that shown in Figure 7.6.

In the Britain, which does not have a Freedom of Information Act, the theory is sim-
pler: the system will automatically reply ‘Classified’ to a Low user who tries to see or
alter a High record. The two available views would be as shown in Figure 7.7.

This makes the system engineering simpler. It also prevents the mistakes and covert
channels which can still arise with cover stories (e.g., a Low user tries to add a con-
tainer of ammunition for Cyprus). The drawback is that everyone tends to need the
highest available clearance to get their work done. (In practice, of course, cover stories
may still get used so as not to advertise the existence of a covert mission any more than
need be.)

7.5.6 Other Practical Problems

Multilevel secure systems are surprisingly expensive and difficult to build and deploy.
There are many sources of cost and confusion.

• MLS systems are built in small volumes, and often to high standards of physi-
cal robustness, using elaborate documentation, testing, and other quality con-
trol measures driven by military purchasing bureaucracies.

• MLS systems have idiosyncratic administration tools and procedures. A
trained Unix administrator can’t just take on an MLS installation without sig-
nificant further training. A USAF survey showed that many MLS systems
were installed without their features being used [624].

Chapter 7: Multilevel Security

156

• Many applications need to be rewritten or at least greatly modified to run un-
der MLS operating systems [655]. For example, CMWs that display informa-
tion at different levels in different windows, and prevent the user from doing
cut-and-paste operations from High to Low, often have problems with code
that tries to manipulate the color map. Access to files might be quite different,
as might the format of things like access control lists. Another source of con-
flict with commercial software is the license server; if a High user invokes an
application, which goes to a license server for permission to execute, an MLS
operating system will promptly reclassify the server High and deny access to
Low users. So, in practice, we usually end up (a) running two separate license
servers, thus violating the license terms; or (b) having an MLS license server
that tracks licenses at all levels and hence must be part of the TCB (this re-
stricts your choice of platforms); or (c) using the licensed software at only one
of the levels.

• Because processes are automatically upgraded as they see new labels, the files
they use have to be, too. New files default to the highest label belonging to any
possible input. The result is a chronic tendency for things to be overclassified.

• It is often inconvenient to deal with “blind write-up”; when a low-level appli-
cation sends data to a higher-level one, BLP prevents any acknowledgment
being sent. The effect is that information vanishes into a “black hole.” The an-
swer to this is varied. Some organizations accept the problem as a fact of life;
in the words of a former NSA chief scientist, “When you pray to God, you do
not expect an individual acknowledgment of each prayer before saying the
next one.” Others use pumps rather than prayer, and accept a residual covert
bandwidth as a fact of life.

• The classification of data is not entirely straightforward:

• In the run-up to a military operation, the location of “innocuous” stores,
such as food, could reveal tactical intentions, and so may be suddenly up-
graded. It follows that the tranquility property cannot simply be assumed.

• Classifications are not necessarily monotone. Equipment classified as
‘Confidential’ in the peacetime inventory may easily contain components
classified ‘Secret’.

• Information may need to be downgraded. An intelligence analyst might
need to take a satellite photo classified at TS/SCI, and paste it into an as-
sessment for field commanders at ‘Secret’. However, information could
have been covertly hidden in the image by a virus, and retrieved later
when the file is downgraded. So, downgrading procedures may involve all
sorts of special filters, such as lossy compression of images and word
processors that scrub and reformat text, in the hope that the only informa-
tion remaining is that which lies in plain sight. (I discuss information hid-
ing in more detail in the context of copyright marking in Chapter 20.)

• We may need to worry about the volume of information available to an
attacker. For example, we might be happy to declassify any single satellite
photo, but declassifying the whole collection would reveal our surveil-
lance capability and the history of our intelligence priorities. Similarly, the
government payroll might not be very sensitive per se, but it is well known
that journalists can often identify intelligence personnel working under ci-
vilian cover from studying the evolution of departmental staff lists over a

Security Engineering: A Guide to Building Dependable Distributed Systems

157

period of a few years. (I delve into this issue—the “aggregation prob-
lem”—in more detail in Chapter 8, Section 8.3.2.)

• A related problem is that the output of an unclassified program acting on
unclassified data may be classified. This is related to the aggregation
problem just noted.

• There are always system components—such as memory management—that
must be able to read and write at all levels. This problem is dealt with by “ab-
stracting it away,” and assuming that memory management is part of the
trusted computing base that enforces BLP. The practical outcome is that an
uncomfortably large part of the operating system (plus utilities, plus window-
ing system software, plus middleware such as database software) often ends up
in the trusted computing base. “TCB bloat” constantly pushes up the cost of
evaluation, and reduces assurance.

• Finally, although MLS systems can prevent undesired things (such as infor-
mation leakage) from happening, they also prevent desired things from hap-
pening, too (such as efficient ways of enabling data to be downgraded from
High to Low, which are essential if many systems are to be useful). So even in
military environments, the benefits MLS systems provide can be very ques-
tionable. The associated doctrine also sets all sorts of traps for government
systems builders. A recent example comes from the debate over a U.K. law to
extend wiretaps to Internet service providers (ISPs). (I discuss this law further
in Chapter 21, “E-Policy”). Opponents of the bill forced the government to de-
clare that information on the existence of an interception operation against an
identified target would be classified ‘Secret’. This would have made wiretaps
on Internet traffic impossible without redeveloping all the systems used by
ISPs to support an MLS security policy—which would be impractical regard-
less of the time or budget available. The U.K. government had to declare that
it wouldn’t apply the laid-down standards in this case because of cost.

7.6 Broader Implications of MLS

The nonmilitary reader’s reaction by this point may well be that MLS is clearly impos-
sible to do properly; there are just too many complications. This may be true, but it’s
also true that Bell-LaPadula is the simplest security policy model we know of; every-
thing else is even harder. We’ll look at other models in the next few chapters.

Anyway, although the MLS program has not delivered what was expected, it has
spun off a lot of useful ideas and know-how. Worrying about not just the direct ways a
secure system can be defeated, but also about the second- and third-order consequences
of the protection mechanisms, has been important in developing the underlying sci-
ence. Practical work on building MLS systems also led people to work through many
other aspects of computer security, such as Trusted Path (how does a user know he or
she is talking to a genuine copy of the operating system?), Trusted Distribution (how
does a user know he or she is installing a genuine copy of the operating system?) and
Trusted Facility Management (how can we be sure it’s all administered correctly?). In
effect, tackling one simplified example of protection in great detail cast light on many
things that previously were glossed over. The resulting lessons can be applied to sys-

Chapter 7: Multilevel Security

158

tems with quite different policies. An excellent recent example comes from Cipress, a
prototype system built by the Fraunhofer Institute to provide strict copy and usage
control of digital media [149]. The security policy amounted to a kind of high water
mark; an application which combined a number of protected media streams would pro-
duce an output that could only be accessed by a principal with access to all the keys
that controlled the input streams. This gave rise to many of the problems we have dis-
cussed above, and more: for example, if a media owner revoked access rights to some
content, then this could propagate a lock to large numbers of derivative works.

These lessons are set out in the Rainbow Series of books on computer security,
which were produced by the NSA following the development of SCOMP and the pub-
lication of the Orange Book which it inspired. (These books are so called because of
their different-colored covers.) Though the series is notably silent on some topics, such
as crypto and emission security, it has done a lot to raise consciousness of operational
and evaluation issues which are otherwise easy to ignore (or to dismiss as boring mat-
ters best left to the end purchasers). In fact, the integration of technical protection
mechanisms with operational and procedural controls is one of the most critical, and
neglected, aspects of security engineering. The secure operation of MLS systems is
usually much the weakest link in the chain. The main vulnerability of the STU-III se-
cure telephone, for example, is that generals forget to press the ‘go secure’ button be-
fore discussing classified matters. A particularly instructive case history is that of
Former CIA Director John Deutch. Deutch was supposed to have separate machines at
home for classified and unclassified material, Top Secret communications intelligence
files were found on his unclassified machine, which had been used to access high-risk
web sites in his absence. Deutch said he was unwilling to use the classified CIA net-
work for some purposes because of the risk that CIA colleagues might get access. A
domestic servant, who was an alien, had access to his private machine. Nonetheless,
the risk of compromise was held to be less than that of an intruder sneaking into his
home to take an image of the disk. The report into this mess by the CIA Office of In-
spector General makes instructive reading for anyone concerned with security usability
[761]. I will have more to say on this topic in Part 3, and in the context of a number of
case studies throughout this book.

All that said, the contribution of the MLS model is not all positive. There is a tacti-
cal problem, and a strategic one.

The tactical problem is that the existence of trusted system components, plus a large
set of bureaucratic guidelines, has a strong tendency to displace critical thought. In-
stead of working out a system’s security requirements in a methodical way, designers
just choose what they think is the appropriate security class of component, then regur-
gitate the description of this class as the security specification of the overall system
[624].

One should never lose sight of the human motivations that drive a system design,
and the costs it imposes. Daniel Moynihan [562] provides a critical study of the real
purposes and huge costs of obsessive secrecy in U.S. foreign and military affairs. Fol-
lowing a Senate enquiry, he discovered that President Truman was never told of the
Venona decrypts because the material was considered ‘Army Property’—despite its
being the main motivation for the prosecution of Alger Hiss. As he writes in his book:
“Departments and agencies hoard information, and the government becomes a kind of
market. Secrets become organizational assets, never to be shared save in exchange for
another organization’s assets.” Moynihan reports, for example, that in 1996, the num-

Security Engineering: A Guide to Building Dependable Distributed Systems

159

ber of original classification authorities decreased by 959 to 4,420 (following post-
Cold-War budget cuts), but that the total of all classification actions reported for fiscal
year 1996 increased by 62 percent to 5,789,625.

Yet despite the huge increase in secrecy, the quality of intelligence made available
to the political leadership appears to have declined over time. Effectiveness is under-
mined by interagency feuding and refusal to share information, and by the lack of ef-
fective external critique.1 A strong case can be made that MLS systems, by making the
classification process easier but controlled data sharing harder, actually impair opera-
tional effectiveness.

So the strategic problem is that multilevel security has become so entrenched in
government, and in some parts of industry, that it is often used in highly inappropriate
ways. Even long-time intelligence insiders have documented this [425]. To solve many
problems, we need to be a “fox” rather than a “hedgehog.” Even where a simple, man-
datory, access control system could be appropriate, we often need to control informa-
tion flows across, rather than information flows down. Medical systems are a good
example of this; and we will look at them in the next chapter.

7.7 Summary

Multilevel secure systems are used in a number of military applications, most notably
specialized kinds of firewalls (mail guards and pumps). They may turn out to be ex-
cellent platforms for more general kinds of firewall or Web server. Their broader im-
portance comes from two facts: they have been the main subject of computer security
research since the mid-1970s, and their assumptions underlie many of the schemes
used for security evaluation. It is important for practitioners to understand both the
strengths and limitations of MLS systems, so that they can draw on the considerable
research literature when it’s appropriate, and avoid being dragged into error when it’s
not.

Research Problems

Multilevel confidentiality appears to have been “done to death” by generations of re-
search students. The opportunities that remain may concern multilevel integrity, and
the interaction that multilevel systems have with other security policies: how, for ex-
ample, should a military hospital combine BLP with the bookkeeping and patient pri-
vacy policies discussed in the next two chapters?

1 Although senior people follow the official line when speaking on the record, in private they rail at
the penalties imposed by the bureaucracy. My favorite quip is from an exasperated British gen-
eral: “What’s the difference between Jurassic Park and the Ministry of Defence? One’s a theme
park full of dinosaurs, and the other’s a movie!”

Chapter 7: Multilevel Security

160

Further Reading

One of the better introductions to MLS systems, and especially the problems of data-
bases, is Gollmann’s Computer Security [344]. Amoroso’s Fundamentals of Computer
Security Technology [15] is the best introduction to the formal mathematics underlying
the Bell-LaPadula, noninterference and nondeducibility security models.

The bulk of the published papers on engineering actual multilevel systems can be
found in the annual proceedings of three conferences: the IEEE Symposium on Secu-
rity & Privacy (known as “Oakland,” as that’s where it’s held), the National Computer
Security Conference (renamed the National Information Systems Security Conference
in 1995), whose proceedings are published by the National Institute of Standards and
Technology, and the Computer Security Applications Conference, whose proceedings
are (like Oakland’s) published by the IEEE. Fred Cohen’s experiments on breaking
MLS systems using viruses are described in his book, A Short Course on Computer
Viruses [192]. Many of the classic early papers in the field can be found at the NIST
archive [573]. Finally, the classic on the abuse of the classification process to cover up
waste, fraud, and mismanagement in the public sector was written by Leslie Chapman
[176].

