
Chapter 23: System Evaluation and Assurance

517

CHAPTER

23

System Evaluation and
Assurance

If it’s provably secure, it probably isn’t.

—LARS KNUDSEN

I think any time you expose vulnerabilities it’s a good thing

—U.S. ATTORNEY GENERAL JANET RENO [642]

23.1 Introduction

I’ve covered a lot of material in this book, some of it quite difficult. But I’ve left the
hardest topics to the last. These are the questions of assurance, whether the system will
work, and evaluation, how you convince other people of this.

Fundamentally, assurance comes down to the question of whether capable, moti-
vated people have beat up on the system enough. But how do you define enough? And
how do you define the system? How do you deal with people who protect the wrong
thing, because their model of the requirements is out-of-date or plain wrong? And how
do you allow for human failures? Many systems can be operated just fine by alert ex-
perienced professionals, but are unfit for purpose because they’re too tricky for ordi-
nary folk to use or are intolerant of error.

But if assurance is hard, evaluation is even harder. It’s about how you convince your
boss, your clients—and, in extremis, a jury—that the system is indeed fit for purpose;
that it does indeed work (or that it did work at some particular time in the past). The
reason that evaluation is both necessary and hard is that, often, one principal carries the
cost of protection while another carries the risk of failure. This creates an obvious ten-
sion, and third-party evaluation schemes such as the Common Criteria are marketed as
a means of making it more transparent.

Security Engineering: A Guide to Building Dependable Distributed Systems

518

23.2 Assurance

A working definition of assurance could be “our estimate of the likelihood that a sys-
tem will not fail in some particular way.” This estimate can be based on a number of
factors, such as the process used to develop the system; the identity of the person or
team who developed it; particular technical assessments, such as the use of formal
methods or the deliberate introduction of a number of bugs to see how many of them
are caught by the testing team; and experience—which ultimately depends on having a
model of how reliability grows (or decays) over time as a system is subjected to test-
ing, use, and maintenance.

23.2.1 Perverse Economic Incentives

A good starting point for the discussion of assurance is to look at the various princi-
pals’ motives. As a preliminary let’s consider the things for which we may need assur-
ance:

• Functionality is important and often neglected. It’s all too common to end up
protecting the wrong things or protecting the right things in the wrong way.
Recall from Chapter 8, for example, how the use of the Bell-LaPadula model
in the healthcare environment caused more problems than it solved.

• Strength of mechanisms has been much in the news, thanks to U.S. export
controls on crypto. Many products, such as DVD, were shipped with 40-bit
keys and were thus intrinsically vulnerable. Strength of mechanisms is inde-
pendent of functionality, but can interact with it. For example, in Chapter 14, I
remarked how the difficulty of preventing probing attacks on smartcards led
the industry to protect other, relatively unimportant things such as the secrecy
of chip masks.

• Implementation is the traditional focus of assurance. This involves whether,
given the agreed functionality and strength of mechanisms, the product has
been implemented correctly. As we’ve seen, most real-life technical security
failures are due to programming bugs—stack overflow vulnerabilities, race
conditions, and the like. Finding and fixing them absorbs most of the effort of
the assurance community.

• Usability is the missing factor—one might even say the spectre at the feast.
Perhaps the majority of system-level (as opposed to purely technical) failures
have a large human interface component. It is very common for secure system
designers to tie up the technical aspects of protection tightly, without stopping
to consider human frailty. There are some notable exceptions. The bookkeep-
ing systems described in Chapter 9 are designed to cope with user error; and
the security printing technologies discussed in Chapter 12 are often optimized
to make it easier for untrained and careless people to spot forgeries. But us-
ability concerns developers as well as users. A developer usability issue, men-
tioned in Chapter 4 is that the access controls provided with commodity
operating systems often aren’t used, as it’s so much simpler to make code run
with administrator privilege.

Chapter 23: System Evaluation and Assurance

519

These four factors are largely independent, and the system builder has to choose an
appropriate combination of them to aim at. A personal computer user, for example,
might want high usability, medium assurance (because high would be expensive, and
we can live with the odd virus), high strength of mechanisms (they don’t cost much
more), and simple functionality (as usability is more important). But the market
doesn’t deliver this, and a moment’s thought will indicate why.

Commercial platform vendors go for rich functionality (rapid product versioning
prevents the market being commoditized, and complementary vendors that grab too
much market share can be undermined), low strength of mechanisms (except for cryp-
tography where the escrow debate has led vendors to regard strong crypto as an essen-
tial marketing feature), low implementation assurance (so the military-grade crypto is
easily defeated by Trojan horses), and low usability (application programmers matter
much more than customers, as they enhance network externalities).

In Chapter 22, I described why this won’t change any time soon. The strategy of
“ship it Tuesday and get it right by version 3” isn’t a personal moral defect of Bill
Gates, as some of his critics allege, but is dictated by the huge first-mover advantages
inherent in the economics of networks. And mechanisms that compelled application
developers to use operating system access controls would alienate them, raising the
risk that they might write their code for competitors’ platforms. Thus, the current inse-
curity of commercial systems is perfectly rational from the economists’ viewpoint,
however undesirable from the users’.

Government agencies’ ideals are also frustrated by economics. Their dream is to be
able to buy commercial off-the-shelf products, replace a small number of components
(such as by removing commercial crypto and plugging in Fortezza cards in its place),
and end up with something they can use with existing defense networks. That is, they
want Bell-LaPadula functionality (never mind that it fails to support mechanisms some
of the vendors’ other customers need) and high implementation assurance. There is
little concern with usability, as a trainable and disciplined workforce is assumed (how-
ever wrongly), and low strength of crypto is preferred so as to limit the benefits that
potential enemies can gain from otherwise high-assurance systems being on the mar-
ket. This wish list is unrealistic given not just the cost of high assurance (which I’ll
discuss shortly), but also the primacy of time-to-market, the requirement to appease the
developer community, and the need for frequent product versioning to prevent the
commoditization of markets. Also, larger networks usually swamp smaller ones; so a
million government computer users can’t expect to impose their will on 100 million
users of Microsoft Office.

The dialogue between user advocates, platform vendors, and government is probably
condemned to remain a dialogue of the deaf. But that doesn’t mean there’s nothing
more of interest to say on assurance.

23.2.2 Project Assurance

Assurance is a process very much like the development of code or documents. Just as
you will have bugs in your code and in your specification, you will also have bugs in
your test procedures. So assurance can be done as a one-off project or be the subject of
continuous evolution. An example of the latter is given by the huge databases of
known computer viruses that anti-virus software vendors accumulate over the years to

Security Engineering: A Guide to Building Dependable Distributed Systems

520

do regression-testing of their products. Assurance can also involve a combination, as
when a step in an evolutionary development is managed using project techniques and is
tested as a feature before being integrated and subjected to system-level regression
tests. Here, you also have to find ways of building feature tests into your regression
test suite.

Nonetheless, it’s helpful to look first at the project issues, then at the evolutionary
issues.

23.2.2.1 Security Testing

In practice, security testing usually comes down to reading the product documentation,
reviewing the code, then performing a number of tests. (This is known as white-box
testing, as opposed to black-box testing, for which the tester has the product but not the
design documents or source code). The process is:

1. First look for any obvious flaws, the definition of which will depend on the
tester’s experience.

2. Then look for common flaws, such as stack-overwriting vulnerabilities.

3. Then work down a list of less common flaws, such as those described in the
various chapters of this book.

The process is usually structured by the requirements of a particular evaluation envi-
ronment. For example, it might be necessary to show that each of a list of control ob-
jectives was assured by at least one protection mechanism; in some industries, such as
bank inspection, there are more or less established checklists (see, for example, [72]).

23.2.2.2 Formal Methods

In Chapter 2, I gave an example of a formal method: the BAN logic that can be used to
verify certain properties of cryptographic protocols. The working engineer’s take on
formal methods may be that they’re widely taught in universities, but not used any-
where in the real world. This isn’t quite true in the security business. There are prob-
lems—such as in designing crypto protocols—where intuition is often inadequate and
where formal verification can be helpful. Military purchasers go further, and require
the use of formal methods as a condition of higher levels of evaluation under the Or-
ange Book and the Common Criteria. I’ll discuss this further below. For now, it’s
enough to say that this restricts high evaluation levels to relatively small and simple
products, such as line encryption devices and operating systems for primitive comput-
ers such as smartcards. Even so, formal methods aren’t infallible. Proofs can have er-
rors, too; and often the wrong thing gets proved [673]. The quote by Knudsen at the
head of this chapter refers to the large number of breaks of cryptographic algorithms or
protocols that had previously been proven secure. These breaks generally occur be-
cause one of the proof’s assumptions is unrealistic, or has become so over time.

Chapter 23: System Evaluation and Assurance

521

23.2.2.3 Quis Custodiet?

Just as mistakes can be made by theorem provers and by testers, so they can also be
made by people who draw up checklists of things for the testers to test (and by the se-
curity textbook writers from whose works the checklist writers draw). This is the old
problem of quis custodiet ipsos custodes, as the Romans more succintly put it: who
shall watch the watchmen?

There are a number of things one can do, few of which are likely to appeal to the or-
ganization whose goal is a declaration that a product is free of faults. The obvious one
is fault injection, whereby a number of errors are deliberately introduced into the code
at random. If there are 100 such errors, and the tester finds 70 of them, plus a further
70 that weren’t deliberately introduced, then once the 30 remaining deliberate errors
are removed, you can expect that there are 30 bugs left that you don’t know about.
(This assumes that the unknown errors are distributed the same as the known ones; re-
ality will almost always be worse than this [133].)

Even in the absence of deliberate bug insertion, a rough estimate can be obtained by
looking at which bugs are found by which testers. For example, I had Chapter 7 of this
book reviewed by a fairly large number of people, as I took a draft of it to a conference
on the topic. Given the bugs they found, and the number of people who reviewed the
other chapters, I’d estimate that there are maybe three dozen errors of substance left in
the book. The sample sizes aren’t large enough in this case to justify more than a
guess, but where they are large enough, we can use statistical techniques, which I’ll
describe shortly.

Another factor is the rate at which new attacks are discovered. In the university sys-
tem, we train graduate students by letting them attack stuff; new vulnerabilites and ex-
ploits end up in research papers, which bring fame and, ultimately, promotion. The
mechanics in government agencies and corporate labs are slightly different, but the
overall effect is the same: a large group of capable, motivated people look for new ex-
ploits. Academics usually publish, government scientists usually don’t, and corporate
researchers sometimes do. So you need some means of adding new procedures to your
test suite as fresh ideas come along, and to bear in mind that it will never be complete.

Finally, we get feedback from the rate at which instances of known bugs are discov-
ered in products once they’re fielded. This also provides valuable input for reliability
growth models.

23.2.3 Process Assurance

In recent years, less emphasis has come to be placed on assurance measures focused on
the product, such as testing, and more on process measures, such as who developed the
system. As anyone with experience of system development knows, some programmers
produce code with an order of magnitude fewer bugs than others. Also, some organi-
zations produce much better quality code than others. This is the subject of much at-
tention in the industry.

Some of the differences between high-quality and low-quality development teams
are amenable to direct management intervention. Perhaps the most notable is whether
people are responsible for correcting their own bugs. In the 1980s, many organizations

Security Engineering: A Guide to Building Dependable Distributed Systems

522

interpreted the waterfall model of system development to mean that one team wrote the
specification, another wrote the code, yet another did the testing (including some bug
fixing), while yet another did the maintenance (including the rest of the bug fixing).
The teams communicated with each other only by means of the project documentation.
This was justified on the grounds that it is more efficient for people to concentrate on a
single task at a time; interrupting a programmer to ask him to fix a bug in code he
wrote six months ago and had forgotten about could cost a day’s productivity, while
getting a maintenance programmer to do it might cost only an hour.

But the effect was that the coders produced megabytes of buggy code, and left it to
the poor testers and maintenance people to clear up after them. Over time, both quality
and productivity sagged. Industry analysts have ascribed IBM’s near-death experience
in the early 1990s, which cost over $100 billion in asset value, to this [169]. For its
part, Microsoft considers that one of its most crucial lessons learned as it struggled
with the problems of writing ever larger programs was to have a firm policy that “if
you wrote it, you fix it.” Bugs should be fixed as soon as possible; and even though
they’re as inevitable as death and taxes, programmers should never give up trying to
write clean code.

Many other controllable aspects of the organization can have a significant effect on
output quality, ranging from how bright your hires are to how you train them and the
work habits you inculcate. (See Maguire for an extended discussion of Microsoft pol-
icy [521].)

For some years, internal auditors have included process issues while evaluating the
quality of security code. This is harder to do than you might think, because a large part
of an organization’s quality culture is intangible. While some rules (such as “fix your
own bugs”) seem to be fairly universal, imposing a large number of specific rules
would induce a bureaucratic box-ticking culture, rather than a dynamic competitive
one. Consequently, recent work has aimed for a more holistic assessment of a team’s
capability; the lead contender is the Capability Maturity Model (CMM) from the Soft-
ware Engineering Institute at Carnegie-Mellon University.

CMM is based on the idea that, as a team acquires experience, it can progress
through a series of levels. The model has five levels—initial, repeatable, defined, man-
aged, and optimizing—with a list of new things to be added as you go up the hierarchy.
Thus, for example, project planning must be introduced to move up from initial to re-
peatable, and peer reviews to make the transition from repeatable to defined. There is a
fuller description and bibliography in [767]; several attempts have been made to adapt
CMM to security work, and a significant number of vendors already use it [545, 822].

An even more common process assurance approach is the ISO 9001 standard. The
essence of this standard is that a company must document its processes for design, de-
velopment, testing, documentation, audit, and management control, generally. For
more detail, see [767]; there is now a whole industry of consultants helping companies
get ISO 9001 certification. At its best, it can provide a framework for incremental
process improvement; companies can monitor what goes wrong, trace it back to its
source, fix it, and prevent it happening again. At its worst, it can be an exercise in box-
ticking which merely replaces chaos with more bureaucratic chaos.

Many writers have remarked that organizations have a natural cycle of life, just as
people do. Joseph Schumpeter argued that economic depressions perform a valuable
societal function of clearing out companies that are past it or just generally unfit, in
much the same way that fires rejuvenate forests. Successful companies become com-

Chapter 23: System Evaluation and Assurance

523

placent and bureaucratic, so that some insiders opt for the good life while others leave
(it used to be commonly said that the only people who ever left IBM were the good
ones). Too rapid growth also brings problems: Microsoft insiders blame many of the
current problems on the influx of tens of thousands of new hires in the late 1990s,
many of whom were motivated more by the prospect of making millions from stock
options than by the mission to write good code and get it running on every computer in
the known universe.

The cycle of corporate birth, death, and reincarnation turns much more quickly in
the computer industry than elsewhere, thanks to the combination of technological pro-
gress and multiple network externalities. The telecoms industry is suffering severe
trauma as the computer and communications industries merge and the phone compa-
nies’ 15-year product cycles have to shorten to 15 months to keep up with Microsoft.
The security industry is starting to feel the same pressures. Teams that worked steadily
for decades on cost-plus contracts to develop encryptors or MLS systems for the mili-
tary have suddenly been exposed to ferocious technological and market forces, and
have been told to build completely different things. Some have succeeded, as with the
MLS supplier TIS, which reinvented itself as a firewall vendor; others have failed and
disappeared. Thus, the value of a team of MLS “graybeards” is questionable. In any
case, expert teams usually depend on one or two key gurus, and when they go off to do
a startup, the team’s capability can evaporate overnight.

Schemes such as ISO 9001 and CMM would be more convincing if there were some
effective means of taking certification away from teams that had lost their stars, their
sparkle, or their relevance. It is tempting to think that a solution might lie in the sort of
ranking system used in food guides, where declaring a new establishment to be “the
best Asian restaurant in San Francisco” entails dislodging the previous holder of this
title. Of course, if certification were a more perishable asset, it would have to confer
greater market advantage for companies to invest the same amount of effort in getting
it. This may be feasible: the restaurant guide system works, and academic peer review
works somewhat along the same lines.

23.2.4 Assurance Growth

Another aspect of process-based assurance is that most customers are not so much in-
terested in the development team as in its product. But most software today is pack-
aged rather than bespoke, and is developed by a process of continual evolutionary
enhancement rather than in a one-off project. What, then, can usefully be said about
the assurance level of evolving products?

The quality of such a product can reach equilibrium if the rate at which new bugs are
introduced by product enhancements equals the rate at which old bugs are found and
removed. But there’s no guarantee that this will happen. (There are second-order ef-
fects, such as senescence, when repeated enhancement makes code so complex that its
underlying reliability and maintainability drop off, but I’ll ignore them for the sake of
simplicity.)

While controlling the rate at which bugs are introduced will depend on the kind of
development controls I’ve already described, measuring the rate at which they are re-

Security Engineering: A Guide to Building Dependable Distributed Systems

524

moved requires different tools—models of how the reliability of software (and systems
in general) improves under testing.

A lot is known about reliability growth, as it’s of interest to many more people than
just software engineers.

Where the tester is trying to find a single bug in a system, a reasonable model is the
Poisson distribution: the probability, p, that the bug remains undetected after t statisti-
cally random tests is given by p = e–Et, where E depends on the proportion of possible
inputs that it affects [506]. Where the reliability of a system is dominated by a single
bug—as when we’re looking for the first, or last, bug in a system—reliability growth
can be exponential.

But extensive empirical investigations have shown that in large and complex sys-
tems, the likelihood that the t-th test fails is not proportional to e–Et but to k/t for some
constant k, so the system’s reliability grows very much more slowly. This phenomenon
was first noticed and documented in the bug history of IBM mainframe operating sys-
tems [7], and has been confirmed in many other studies [514]. As a failure probability
of k/t means a mean time between failure (MTBF) of about t/k, reliability grows line-
arly with testing time. This result is often stated by the safety-critical systems commu-
nity as, ‘If you want a mean time between failure of a million hours, then you have to
test for (at least) a million hours’ [150]. This has been one of the main arguments
against the development of complex, critical systems that can’t be fully tested before
use, such as ballistic missile defense.

The reason for the k/t behavior emerged in [105], and was proved under much more
general assumptions in [133]. The latter uses techniques of statistical thermodynamics,
and its core idea is that where a population of bugs with individual survival probabili-
ties pi = e–Eit is large enough for certain statistical assumptions to hold, and they are
eliminated over a long period of time, then the e–Eit statistics of the individual bugs
sum to k/t for the whole system. If they were eliminated any more slowly than this, the
software would never work at all; and if they were eliminated any more quickly, the
product would rapidly become bug-free—which, as we know, it usually doesn’t.

This model gives a number of other interesting results. Under assumptions that are
often reasonable, it is the best possible: the rule that you need a million hours of testing
to get a million hours MTBF is inescapable, up to some constant multiple that depends
on the initial quality of the code and the scope of the testing. This amounts to a proof
of a version of Murphy’s Law, that the number of defects that survive a selection proc-
ess is maximized.

The model is similar to mathematical models of the evolution of a biological species
under selective pressure. The role of bugs is played, roughly, by genes that reduce fit-
ness. But some of the implications are markedly different. Murphy’s Law, that the
number of defects that survive a selection process is maximized, may be bad news for
the engineer, but it’s good news for biological species. While software testing removes
the minimum possible number of bugs, consistent with the tests applied, biological
evolution enables a species to adapt to a changed environment at a minimum cost in
early deaths, meanwhile preserving as much diversity as possible. This diversity helps
the species survive future environmental shocks. For example, if a population of rab-
bits is preyed on by snakes, the rabbits will be selected for alertness rather than speed.
The variability in speed will remain, so if foxes arrive in the neighborhood, the rabbit
population’s average running speed will rise sharply under selective predation. More
formally, the fundamental theorem of natural selection says that a species with a high

Chapter 23: System Evaluation and Assurance

525

genic variance can adapt to a changing environment more quickly. But when Fisher
proved this in 1930 [297], he was also proving that complex software will exhibit the
maximum possible number of bugs when it is migrated to a new environment.

The evolutionary model also points to fundamental limits on the reliability gains to
be had from reusable software components such as objects or libraries; well-tested li-
braries simply mean that overall failure rates will be dominated by new code. It also
explains the observation of the safety-critical systems community that test results are
often a poor performance indicator [506]: the failure time measured by a tester depends
only on the initial quality of the program, the scope of the testing and the number of
tests, so it gives virtually no further information about the program’s likely perform-
ance in another environment. There are also some results that are unexpected, but ob-
vious in retrospect. For example, each bug’s contribution to the overall failure rate is
independent of whether the code containing it is executed frequently or
rarely—intuitively, code that is executed less is also tested less. Finally, as mentioned
in Section 22.4.3, it is often more economic for different testers to work on a program
in parallel rather than in series.

In short, complex systems become reliable only following prolonged testing. Thus,
this book may be pretty reliable once thousands of people have read it and sent me bug
reports; but if there’s a second edition with a lot of new material, I can expect new
bugs to creep in too. As for mass-market software, its wide use enables rapid debug-
ging in principle; but, in practice, the constant new versions dictated by network eco-
nomics place severe limits on what may reasonably be expected.

There appears to be no reason why these results don’t go across in their entirety if a
bug is defined to be a defect that causes a security vulnerability, rather than just any
old defect—just as long as the number of bugs is large enough to do statistics.

23.2.5 Evolution and Security Assurance

Evolutionary growth of reliability may be much worse for the software engineer than
for a biological species, but for the security engineer it’s worse still.

Rather than going into the detailed mathematics, let’s take a slightly simplified ex-
ample. Suppose a large and complex product such as Win2K has a million bugs, each
with an MTBF of a billion hours. Also suppose that Paddy works for the Irish Republi-
can Army, and his job is to break into the British Army’s computer to get the list of
informers in Belfast, while Brian is the army assurance guy whose job is to stop Paddy.
So he must learn of the bugs before Paddy does.

Paddy also has a day job, so he can only do 1,000 hours of testing a year. Brian, on
the other hand, has full Windows source code, dozens of PhDs, control of the commer-
cial evaluation labs, an inside track on CERT, an information-sharing deal with other
UKUSA member states, and he runs the government’s scheme to send consultants to
critical industries such as power and telecoms to find out how to hack them (pardon
me, to advise them how to protect their systems). Brian does ten million hours a year
of testing.

After a year, Paddy finds a bug, while Brian has found 10,000. But the probability
that Brian has found Paddy’s bug is only 1%. Even if Brian declares martial law, drafts
all Britain’s 50,000 computer science graduates to a concentration camp in Gloucester-
shire, and sets them trawling through the Windows source code, he’ll still only get 100
million hours of testing done each year. After ten years, he will find Paddy’s bug. But
by then Paddy will have found nine more, and it’s unlikely that Brian will know of all

Security Engineering: A Guide to Building Dependable Distributed Systems

526

of them. Worse, Brian’s bug reports will have become such a firehose that Bill will
have killfiled them.

In other words, Paddy has thermodynamics on his side. Even a very moderately re-
sourced attacker can break anything that’s at all large and complex. There is nothing
that can be done to stop this, as long as there are enough different security vulnerabili-
ties to do statistics. The ray of hope is that, if all your vulnerabilities are, say, stack
overflows, and you start using a new compiler that traps them, then for modelling pur-
poses, there was only a single vulnerability, and you escape the statistical trap.

23.3 Evaluation

A working definition of evaluation is “the process of assembling evidence that a sys-
tem meets, or fails to meet, a prescribed assurance target.” (Evaluation often overlaps
with testing, and is sometimes confused with it.) As I mentioned, this evidence might
be needed only to convince your boss that you’ve completed the job. But, often, it is
needed to reassure principals who will rely on the system that the principal who devel-
oped it, or who operates it, has done a workmanlike job. The fundamental problem is
the tension that arises when the party who implements the protection and the party who
relies on it are different.

Sometimes the tension is simple and visible, as when you design a burglar alarm to
standards set by insurance underwriters, and have it certified by inspectors at the insur-
ers’ laboratories. Sometimes it’s still visible but more complex, as when designing to
government security standards that try to reconcile dozens of conflicting institutional
interests, or when hiring your company’s auditors to review a system and tell your boss
that it’s fit for purpose. It is harder when multiple principals are involved; for example,
when a smartcard vendor wants an evaluation certificate from a government agency
(which is trying to encourage the use of some feature such as key escrow that is in no
one else’s interest), in order to sell the card to a bank, which in turn wants to use it to
dump the liability for fraud on to its customers. That may seem all rather crooked; but
there may be no clearly criminal conduct by any of the people involved. The crooked-
ness may be an emergent property that arises from managers following their own per-
sonal and departmental imperatives.

For example, managers often buy products and services that they know to be subop-
timal or even defective, but which are from big-name suppliers. This is known to
minimize the likelihood of getting fired when things go wrong. Corporate lawyers
don’t condemn this as fraud, but praise it as due diligence. The end result may be that
the relying party, the customer, has no say whatsoever, and will find it hard to get re-
dress against the bank, the vendor, the evaluator, or the government when things go
wrong.

Another serious and pervasive problem is that the words “assurance” and “evalua-
tion” are often interpreted to apply only to the technical aspects of the system, and ig-
nore usability (not to mention the even wider issues of appropriate internal controls
and good corporate governance). Company directors also want assurance—that the di-

Chapter 23: System Evaluation and Assurance

527

rected procedures are followed, that there are no material errors in the accounts, that
applicable laws are being complied with, and dozens of other things. But many evalua-
tion schemes (especially the Common Criteria) studiously ignore the human and orga-
nizational elements in the system. If any thought is paid to them at all, the evaluation
of these elements is considered to be a matter for the client’s IT auditors, or even for a
system administrator setting up configuration files. All that said, I’ll focus on technical
evaluation in what follows.

It is convenient to break evaluation into two cases. The first is where the evaluation
is performed by the relying party; this includes insurance assessments, the independent
verification and validation done by NASA on mission-critial code, and the previous
generation of military evaluation criteria, such as the Orange Book. The second is
where the evaluation is done by someone other than the relying party. Nowadays, this
often means the Common Criteria evaluation process.

23.3.1 Evaluations by the Relying Party

In Chapter 10, I discussed many of the concerns that insurers have with burglar alarm
systems, and the considerations that go into approving equipment for use with certain
sizes of risk. The approval process itself if simple enough; the insurance industry oper-
ates laboratories where tests are conducted. These might involve a fixed budget of ef-
fort (perhaps one person for two weeks, or a cost of $15,000). The evaluator starts off
with a fairly clear idea of what a burglar alarm should and should not do, spends the
budgeted amount of effort looking for flaws, and writes a report. The laboratory then
either approves the device, turns it down, or demands some changes.

In Section 7.4, I described another model of evaluation, that done from 1985–2000
at the NSA’s National Computer Security Center on computer security products pro-
posed for U.S. government use. These evaluations were conducted according to the
Orange Book, the Trusted Computer Systems Evaluation Criteria [240]. The Orange
Book and its supporting documents set out a number of evaluation classes:

C1: Discretionary access control by groups of users. In effect, this is considered to be
equal to no protection.

C2: Discretionary access control by single users; object reuse; audit. C2 corresponds
to carefully configured commercial systems; for example, C2 evaluations were given
to IBM mainframe operating systems with RACF, and to Windows NT. (Both of
these were conditional on a particular version and configuration; in NT’s case, for ex-
ample, it was restricted to diskless workstations).

B1: Mandatory access control. All objects carry security labels, and the security policy
(which means Bell-LaPadula or a variant) is enforced independently of user actions.
Labeling is enforced for all input information.

B2: Structured protection. As B1, but there must also be a formal model of the secu-
rity policy that has been proved consistent with security axioms. Tools must be pro-
vided for system administration and configuration management. The TCB must be
properly structured and its interface clearly defined. Covert channel analysis must be
performed. A trusted path must be provided from the user to the TCB. Severe testing,
including penetration testing, must be carried out.

Security Engineering: A Guide to Building Dependable Distributed Systems

528

B3: Security domains. As B2, but the TCB must be minimal; it must mediate all access
requests, be tamper-resistant, and be able to withstand formal analysis and testing.
There must be real-time monitoring and alerting mechanisms, and structured tech-
niques must be used in implementation.

A1: Verification design. As B3, but formal techniques must be used to prove the
equivalence between the TCB specification and the security policy model.

The evaluation class of a system determines what spread of information may be
processed on it. The example I gave in Section 7.5.2 was that a system evaluated to B3
may in general process information at Unclassified, Confidential, and Secret, or at
Confidential, Secret, and Top Secret. (The complete rule set can be found in [244].)
Although these ratings will cease to be valid after the end of 2001, they have had a de-
cisive effect on the industry.

The business model of Orange Book evaluations followed traditional government
service work practices. A government user would want some product evaluated; the
NSA would allocate people to do it; they would do the work (which, given traditional
civil service caution and delay, could take two or three years); the product, if success-
ful, would join the evaluated products list; and the bill would be picked up by the tax-
payer. The process was driven and controlled by the government—the party that was
going to rely on the results of the evaluation—while the vendor was the supplicant at
the gate. Because of the time the process took, evaluated products were usually one or
two generations behind current commercial products, and often an order of magnitude
more expensive.

The Orange Book wasn’t the only evaluation scheme running in America. I men-
tioned in Section 14.4 the FIPS 140-1 scheme for assessing the tamper-resistance of
cryptographic processors; this uses a number of independent laboratories as contrac-
tors. Independent contractors are also used for Independent Verification and Validation
(IV&V), a scheme set up by the Department of Energy for systems to be used in nu-
clear weapons, and later adopted by NASA for manned space flight, which has many
similar components (at least at the rocketry end of things). In IV&V, there is a simple
evaluation target: zero defects. The process is still driven and controlled by the relying
party—the government. The IV&V contractor is a competitor of the company that built
the system, and its payments are tied to the number of bugs found.

Other governments had similar schemes. The Canadians had the Canadian Trusted
Products Evaluation Criteria (CTPEC), while a number of European countries devel-
oped the Information Technology Security Evaluation Criteria (ITSEC). The idea was
that a shared evaluation scheme would help European defense contractors compete
against U.S. suppliers, with their larger economies of scale; Europeans would no
longer be required to have separate certification in Britain, France, and Germany. IT-
SEC combined ideas from the Orange Book and IV&V processes, in that there were a
number of different evaluation levels; and for all but the highest of these levels, the
work was contracted out. However, ITSEC introduced a pernicious innovation: the
evaluation was not paid for by the government but by the vendor seeking an evaluation
on its product.

Chapter 23: System Evaluation and Assurance

529

This was the usual civil service idea of killing several birds with one stone: saving
public money and at the same time promoting a more competitive market. As usual, the
stone appears to have done more damage to the too-clever hunter than to either of the
birds.

This change in the rules provided the critical perverse incentive. It motivated the
vendor to shop around for the evaluation contractor who would give its product the
easiest ride, whether by asking fewer questions, charging less money, taking the least
time, or all of these. (The same may happen with FIPS 140-1 now that commercial
companies are starting to rely on it for third-party evaluations.) To be fair, the potential
for this was realized, and schemes were set up whereby contractors could obtain ap-
proval as a commercial licensed evaluation facility (CLEF). The threat that a CLEF
might have its license withdrawn was intended to offset the commercial pressures to
cut corners.

23.3.2 The Common Criteria

This sets the stage for the Common Criteria. The original goal of the Orange Book was
to develop protection measures that would be standard in all major operating systems,
not an expensive add-on for captive government markets (as Orange Book evaluated
products became). The problem was diagnosed as too-small markets, and the solution
was to expand them. Because defense contractors detested having to obtain separate
evaluations for their products in the United States, Canada, and Europe, agreement was
reached to scrap the national evaluation schemes and replace them with a single stan-
dard. The work was substantially done in 1994–1995, and the European model won out
over the U.S. and Canadian alternatives. As with ITSEC, evaluations under the Com-
mon Criteria, at all but the highest levels are done by CLEFs, and are supposed to be
recognized in all participating countries (though any country can refuse to honor an
evaluation if it says its national security is at stake); and vendors pay for the evalua-
tions.

There are some differences. Most crucially, the Common Criteria have much more
flexibility than the Orange Book. Rather than expecting all systems to conform to Bell-
LaPadula, a product is evaluated against a protection profile, which, at least in theory,
can be devised by the customer. This doesn’t signify that the Department of Defense
has abandoned multilevel security as much as an attempt to broaden the tent, get lots of
commercial IT vendors to use the Common Criteria scheme, and thus defeat the per-
verse economic incentives described in Section 23.2.1 above. The aspiration was to
create a bandwagon effect, which would result in the commercial world adapting itself
somewhat to the government way of doing things.

23.3.2.1 Common Criteria Terminology

To discuss the Common Criteria in detail, I need to introduce some more jargon. The
product under test is known as the target of evaluation (TOE). The rigor with which
the examination is carried out is the evaluation assurance level (EAL); it can range
from EAL1, for which functional testing is sufficient, all the way up to EAL7, for
which thorough testing is required as well as a formally verified design. The highest
evaluation level commonly obtained for commercial products is EAL4, although there

Security Engineering: A Guide to Building Dependable Distributed Systems

530

is one smartcard operating system with an EAL6 evaluation (obtained, however, under
ITSEC rather than under CC).

A protection profile is a set of security requirements, their rationale, and an EAL.
The profile is supposed to be expressed in an implementation-independent way to en-
able comparable evaluations across products and versions. A security target (ST) is a
refinement of a protection profile for a given target of evaluation. In addition to evalu-
ating a product, one can evaluate a protection profile (the idea is to ensure that it’s
complete, consistent, and technically sound) and a security target (to check that it
properly refines a given protection profile). When devising something from scratch, the
idea is to first create a protection profile, and evaluate it (if a suitable one doesn’t exist
already), then do the same for the security target, then finally evaluate the actual prod-
uct. The result of all this is supposed to be a registry of protection profiles and a cata-
logue of evaluated products.

A protection profile should describe the environmental assumptions, the objectives,
and the protection requirements (in terms of both function and assurance), and break
them down into components. There is a stylized way of doing this. For example,
FCO_NRO is a functionality component (hence F) relating to communications (CO), and it
refers to nonrepudiation of origin (NRO). Other classes include FAU (audit), FCS (crypto
support), and FDP, which means data protection (this isn’t data protection as in Euro-
pean law, but refers to access control, Bell-LaPadula information flow controls, and
related properties). The component catalogue is heavily biased toward supporting MLS
systems.

There are also catalogues of:

• Threats, such as T.Load_Mal—“Data loading malfunction: an attacker may ma-
liciously generate errors in set-up data to compromise the security functions of
the TOE.”

• Assumptions, such as A.Role_Man—“Role management: management of roles
for the TOE is performed in a secure manner” (in other words, the developers,
operators and so on behave themselves).

• Organizational policies, such as P.Crypt_Std—“Cryptographic standards:
cryptographic entities, data authentication, and approval functions must be in
accordance with ISO and associated industry or organizational standards.”

• Objectives, such as O.Flt_Ins—“Fault insertion: the TOE must be resistant to
repeated probing through insertion of erroneous data.”

• Assurance requirements, such as ADO_DEL.2—“Detection of modification: the
developer shall document procedures for delivery of the TOE or parts of it to
the user.”

I mentioned that a protection profile will contain a rationale. This typically consists
of tables showing how each threat is controlled by one or more objectives, and, in the
reverse direction, how each objective is necessitated by some combination of threats or
environmental assumptions, plus supporting explanations. It will also justify the selec-
tion of an assurance level and requirements for strength of function.

The fastest way to get the hang of this is to read a few of the existing profiles, such
as that for smart cards [579]. As with many protection profiles, this provides a long list
of things that can go wrong and things that a developer can do to control them, and so
is a useful checklist. The really important aspects of card protection, though, are found
in O.Phys_Prot, “Physical protection: the TOE must be resistant to physical attack or be

Chapter 23: System Evaluation and Assurance

531

able to create difficulties in understanding the information derived from such an at-
tack” [p. 24]. An inexperienced reader might not realize that this objective is the whole
heart of the matter; and as explained in Chapter 14, it’s extremely hard to satisfy.
(There’s an admission on pp. 100–101 that competent attackers will still get through,
but this is couched in terms likely to be opaque to the lay reader.) In general, the Crite-
ria and the documents generated using them are unreadable, and this undermines the
value they were intended to bring to the nonspecialist engineer.

Still, the Common Criteria can be useful to the security engineer in that they provide
such extensive lists of things to check. They can also provide a management tool for
keeping track of all the various threats and ensuring that they’re all dealt with (other-
wise, it’s very easy for one to be forgotten in the mass of detail). But if the client in-
sists on an evaluation—especially at higher levels—then these lists are apt to turn from
a help into a millstone. Before accepting all the costs and delays this will cause, it’s
important to understand what the Common Criteria don’t do.

23.3.2.2 What the Common Criteria Don’t Do

The documents admit that the Common Criteria don’t deal with administrative security
measures, nor “technical-physical” aspects such as Emsec, nor crypto algorithms, nor
the evaluation methodology, nor how the standards are to be used. The documents
claim not to assume any specific development methodology (but then go on to assume
a waterfall approach). There is a nod in the direction of evolving the policy in response
to experience, but reevaluation of products is declared to be outside the scope. Oh, and
there is no requirement for evidence that a protection profile corresponds to the real
world; and I’ve seen a few that studiously ignore published work on relevant vulner-
abilities. In other words, the Criteria avoid all the hard and interesting bits of security
engineering, and can easily become a cherry pickers’ charter.

The most common specific criticism (apart from cost and bureaucracy) is that the
Criteria are too focused on the technical aspects of design. For example, in ADO_DEL.2
(and elsewhere) we find that procedures are seen as secondary to technical protection
(the philosophy is to appeal to procedures where a technical fix isn’t available). But, as
explained in Section 12.6, when evaluating a real system, you have to assess the capa-
bility and motivation of the personnel at every stage in the process. This is fundamen-
tal, not something that can be added on afterward.

Even more fundamental, is that business processes should not be driven by the limits
of the available technology (and especially not by the limitations of the available ex-
pensive, out-of-date military technology). System design should be driven by business
requirements; and technical mechanisms should be used only where they’re justified,
not just because they exist. In particular, technical mechanisms shouldn’t be used
where the exposure is less than the cost of controlling it, or where procedural controls
are cheaper. Remember why Samuel Morse beat the dozens of other people who raced
to build electric telegraphs in the early nineteenth century. They tried to build modems,
so they could deliver text from one end to the other; Morse realized that, given the
technology then available, it was cheaper to train people to be modems.

So much for the theory of what’s wrong with the Criteria. As always, the practical
vulnerabilities are different, and at least as interesting.

Security Engineering: A Guide to Building Dependable Distributed Systems

532

23.3.3 What Goes Wrong

In none of the half-dozen or so affected cases I’ve been involved in has the Common
Criteria approach proved satisfactory. (Perhaps that’s because I am called in only when
things go wrong—but my experience still indicates a lack of robustness in the process.)

One of the first points that must be made is that the CLEFs that do the evaluations
are beholden for their registration to the local intelligence agency, and their staff must
all have clearances. This leaves open a rather wide path toward what one might call
institutional corruption.

Corruption doesn’t have to involve money changing hands or even an explicit ex-
change of favors. For example, when the Labor party won the 1997 election in Britain,
I soon received a phone call from an official at the Department of Trade and Industry.
He wanted to know whether I knew any computer scientists at the University of Leeds,
so that the department could award my group some money to do collaborative research
with them. It transpired that the incoming science minister represented a constituency
in Leeds. This does not imply that the minister told his officials to find money for his
local university; almost certainly it was an attempt by the officials to schmooze him.

23.3.3.1 Corruption, Manipulation, and Inertia

This preemptive cringe, as one might call it, appears to play a large part in the conduct
of the evaluation labs. The most egregious example in my experience occurred in the
British National Health Service. The service had agreed, under pressure from the doc-
tors, to encrypt traffic on the health service network; GCHQ made no secret of its wish
that key escrow products be used. Trials were arranged; one of them used commercial
encryption software from a Danish supplier that had no key escrow, and cost £3,000,
while the other used software from a U.K. defense contractor that had key escrow, and
cost £100,000. To GCHQ’s embarrassment, the Danish software worked, but the Brit-
ish supplier produced nothing that was usable. The situation was quickly salvaged by
having a company with a CLEF license evaluate the trials. In its report, it claimed the
exact reverse: that the escrow software worked fine, while the foreign product had all
sorts of problems. Perhaps the CLEF was simply told what to write; it’s just as likely
that the staff wrote what they knew GCHQ wanted to read.

Sometimes, an eagerness to please the customer becomes apparent. In the context of
the Icelandic health database (Section 8.3.4.1 above), its promoters wanted to defuse
criticism from doctors about its privacy problems, so they engaged a British CLEF to
write a protection profile for them. This simply repeated, in Criteria jargon, the pro-
moters’ original design and claims; it studiously avoided noticing flaws in this design,
which had already been documented and even discussed on Icelandic TV [38].

Sometimes the protection profiles might be sound, but the way they’re mapped to
the application isn’t. For example, European governments and IT vendors are currently
working on regulations for the “advanced electronic signatures,” which, as mentioned
in Section 21.2.4.4, will shortly have to be recognized as the equivalent of handwritten
signatures in all EU member states. The present proposal is that the signature creation
device should be a smartcard evaluated to above level EAL4. (The profile [579] is for
EAL4 augmented, which, as mentioned, is sufficient to keep out all attackers but the
competent ones.) But no requirements are proposed for the PC that displays to you the
material that you think you are signing. The end result will be a “secure” (in the sense

Chapter 23: System Evaluation and Assurance

533

of non-repudiable) signature on whatever the virus or Trojan in your PC sent to your
smartcard.

Of course, insiders figure out even more sophisticated ways to manipulate the sys-
tem. A nice example comes from how the French circumvented British and German
opposition to the smartcard-based electronic tachograph described in Section 10.4.
They wrote a relaxed protection profile and sent it to a British CLEF to be evaluated.
The CLEF was an army software company; whatever their knowledge of MLS, they
knew nothing about smartcards. But this didn’t lead them to turn down the business.
They also didn’t know that the U.K. government was opposed to approval of the pro-
tection profile. Thus, Britain was left with a choice between accepting defective road
safety standards as a fait accompli, and undermining confidence in the Common Crite-
ria.

Given all the corruption, greed, incompetence, and manipulation, it’s like a breath of
fresh air to find some good, old-fashioned bureaucratic inertia. An example is the
healthcare protection profile under development for the U.S. government. Despite all
the problems with using the MLS protection philosophy in healthcare, which I dis-
cussed in Chapter 9, that’s what the profile ended up using [34]. It assumed that no
users would be hostile (despite the fact that almost all attacks on health systems are
from insiders), and insisted that multiple levels be supported, even though, as de-
scribed in Chapter 9, levels don’t work in that context. It also provided no rules as to
how classifications or compartments should be managed, but left access control policy
decisions to the catch-all phrase “need to know.”

23.3.3.2 Underlying Problems

In general, the structure of the Common Criteria is strongly oriented toward MLS sys-
tems and to devices that support them, such as government firewalls and encryption
boxes. This is unsurprising given the missions of the agencies that developed them.
They assume trained obedient users, small systems that can be formally verified, uni-
form MLS-type security policies, and an absence of higher-level attacks, such as legal
challenges. This makes them essentially useless for most of the applications one finds
in the real world.

As for the organizational aspects, I mentioned in 23.2.3 that process-based assurance
systems fail if accredited teams don’t lose their accreditation when they lose their
sparkle. This clearly applies to CLEFs. Even if CLEFs were licensed by a body inde-
pendent of the intelligence community, many would deteriorate as key staff leave or as
skills don’t keep up with technology; and as clients shop around for easier evaluations,
there will inevitably be grade inflation. Yet, at present, I can see no usable mechanism
whereby a practitioner with very solid evidence of incompetence (or even dishonesty)
can challenge a CLEF and have it removed from the list. In the absence of sanctions
for misbehavior, institutional corruption will remain a serious risk.

When presented with a new security product, the engineer must always consider
whether the sales rep is lying or mistaken, and how. The Common Criteria were sup-
posed to fix this problem, but they don’t. When presented with a product from the
evaluated list, you have to ask how the protection profile was manipulated and by
whom; whether the CLEF was dishonest or incompetent; what pressure from which
government was applied behind the scenes; and how your rights are eroded by the cer-
tificate.

Security Engineering: A Guide to Building Dependable Distributed Systems

534

For example, if you use an unevaluated product to generate digital signatures, then a
forged signature turns up and someone tries to use it against you, you might reasonably
expect to challenge the evidence by persuading a court to order the release of full
documentation to your expert witnesses. A Common Criteria certificate might make a
court very much less ready to order disclosure, and thus could severely prejudice your
rights. In fact, agency insiders admit after a few beers that the main issue is “confi-
dence”—that is, getting people to accept systems as secure even when they aren’t.

A cynic might suggest that this is precisely why, in the commercial world, it’s the
vendors of products that rely on obscurity and that are designed to transfer liability
(such as smartcards), to satisfy due-diligence requirements (such as firewalls) or to
impress naive users (such as PC access control products), who are most enthusiastic
about the Common Criteria. A really hard-bitten cynic might point out that since the
collapse of the Soviet Union, the agencies justify their existence by economic espio-
nage, and the Common Criteria signatory countries provide most of the interesting tar-
gets. A false U.S. evaluation of a product that is sold worldwide may compromise 250
million Americans; but as it will also compromise 400 million Europeans and 100 mil-
lion Japanese, the balance of advantage lies in deception. The balance is even stronger
with small countries such as Britain, which has fewer citizens to protect and more for-
eigners to attack. In addition, agencies get brownie points (and budgets) for foreign
secrets they steal, not for local secrets that foreigners didn’t manage to steal.

An economist, then, is unlikely to trust a Common Criteria evaluation. Perhaps I’m
one of the cynics, but I tend to view them as being somewhat like a rubber crutch. Such
a device has all sorts of uses, from winning a judge’s sympathy through wheedling
money out of a gullible government to smacking people round the head. (Just don’t try
to put serious weight on it!)

Fortunately, the economics discussed in Section 23.2.1 should limit the uptake of the
Criteria to sectors where an official certification, however irrelevant, erroneous, or
mendacious, offers some competitive advantage.

23.4 Ways Forward

In his classic book, The Mythical Man-Month, Brooks argues compellingly that there is
no “silver bullet” to solve the problems of software projects that run late and over
budget [140]. The easy parts of the problem, such as developing high-level languages
in which programmers can work much better than in assembly language, have been
done. The removal of much of the accidental complexity of programming means that
the intrinsic complexity of the application is what’s left. I discussed this in Chapter 22,
in the general context of system development methodology; the above discussion
should convince you that exactly the same applies to the problem of assurance and,
especially, to evaluation.

A more realistic approach to evaluation and assurance would look not just at the
technical features of the product but at how it behaves in real applications. Usability is
ignored by the Common Criteria, but is in reality all-important; a U.K. government

Chapter 23: System Evaluation and Assurance

535

email system that required users to reboot their PC whenever they changed compart-
ments frustrated users so much that they made informal agreements to put everything
in common compartments—in effect wasting a nine-figure investment. (Official se-
crecy will no doubt continue to protect the guilty parties from punishment.) The kind
of features I described in the context of bookkeeping systems in Chapter 9, which are
designed to limit the effects of human frailty, are also critical. In most applications, we
must assume that people are always careless, usually incompetent, and occasionally
dishonest.

It’s also necessary to confront the fact of large, feature-rich programs that are up-
dated frequently. Network economics cannot be wished away. Evaluation and assur-
ance schemes, such as the Common Criteria, ISO9001, and even CMM, try to squeeze
a very volatile and competitive industry into a bureaucratic straightjacket, to provide
purchasers with the illusion of stability. If such stability did exist, the whole industry
would flock to it; but the best people can do is flock to brands, such as IBM in the
1970s and 1980s, and Microsoft now. The establishment and maintenance of these
brands involves huge market forces; security plays a small role.

I’ve probably given you enough hints by now about how to cheat the system and
pass off a lousy product as a secure one—at least long enough for the problem to be-
come someone else’s. In the remainder of this book, I’ll assume that you’re making an
honest effort to protect a system and that you want risk reduction, rather than due dili-
gence or some other kind of liability dumping. In many cases, it’s the system owner
who loses when the security fails; I’ve cited a number of examples earlier (nuclear
command and control, pay-TV, prepayment utility meters, etc.) and they provide some
of the more interesting engineering examples.

When you really want a protection property to hold it is vital that the design be sub-
jected to hostile review. It will be eventually, and it’s better if it’s done before the
system is fielded. As discussed in one case history after another, the motivation of the
attacker is almost all-important; friendly reviews, by people who want the system to
pass, are essentially useless, compared with contributions by people who are seriously
trying to break it.

23.4.1 Semi-Open Design

One way of doing this is, to hire multiple experts from different consultancy firms or
universities. Another is to use multiple different accreditation bodies: I mentioned in
21.6.4 how voting systems in the United States are vetted independently in each state;
and in the days before standards were imposed by organizations such as VISA and
SWIFT, banks would build local payment networks, with each of them having the de-
sign checked by its own auditors. Neither approach is infallible, though; there are some
really awful legacy voting and banking systems.

Another, very well established, technique is what I call semi-open design. Here, the
architectural-level design is published, even though the implementation details may not
be. Examples that I’ve given include the smartcard banking protocol discussed in Sec-
tion 2.7.1, and the nuclear command and control systems mentioned in Chapter 11.

Security Engineering: A Guide to Building Dependable Distributed Systems

536

Another approach to semi-open design is to use an openly available software pack-
age, which anyone can experiment with. This can be of particular value when the main
threat is a legal attack. It is unreasonable to expect a court to grant access to the source
code of a spreadsheet product such as Excel, or even to accounting software sold by a
medium-sized vendor; the opposing expert will just have to buy a copy, experiment
with it, and see what she can find. You just have to take your chances that a relevant
bug will be found in the package later, or that some other feature will turn out to un-
dermine the evidence that it produces.

23.4.2 Open Source

Open source extends the philosophy of openness from the architecture to the imple-
mentation detail. A number of security products have publicly available source code,
of which the most obvious is the PGP email encryption program. The Linux operating
system and the Apache Web server are also open source, and are relied on by many
people to protect information. There is also a drive to adopt open source in govern-
ment.

Open source software is not entirely a recent invention; in the early days of com-
puting, most system software vendors published their source code. This openness
started to recede in the early 1980s when pressure of litigation led IBM to adopt an
“object-code-only” policy for its mainframe software, despite bitter criticism from its
user community. The pendulum now seems to be swinging back.

There are a number of strong arguments in favor of open source, and a few against.
The strongest argument is that if everyone in the world can inspect and play with the
software, then bugs are likely to be found and fixed; in Eric Raymond’s famous phrase,
“To many eyes, all bugs are shallow” [634]. This is especially so if the software is
maintained in a cooperative effort, as Linux and Apache are. It may also be more diffi-
cult to insert backdoors into such a product.

Arguments against open source center on the fact that once software becomes large
and complex, there may be few or no capable motivated people studying it, hence ma-
jor vulnerabilities may take years to be discovered. A recent example was a program-
ming bug in PGP versions 5 and 6, which allowed an attacker to add an extra escrow
key without the keyholder’s knowledge [690], and which was fielded for several years
before it was spotted. (The problem may be that PGP is being developed faster than
people can read the code; that many of the features with which it’s getting crammed
are uninteresting to the potential readers; or just that now that it’s a commercial prod-
uct, people are not so motivated to do verification work on it for free.)

There have also been backdoor “maintenance passwords” in products such as send-
mail that persisted for years before they were removed. The concern is that there may
be attackers who are sufficiently motivated to spend more time finding bugs or exploit-
able features in the published code than the community of reviewers are. In fact, it can
be worse than this; as noted in Section 23.2.4, different testers find different bugs, be-
cause their test focus is different, so it’s quite possible that even once a product had
withstood 10,000 hours of community scrutiny, a foreign intelligence agency that in-

Chapter 23: System Evaluation and Assurance

537

vested a mere 100 hours might find a new exploitable vulnerability. Given the cited
reliability growth models, the probabilities are easy enough to work out.

Other arguments against open source include the observation that active open source
projects add functionality and features at dizzying speed compared to closed software,
which can open up nasty feature interactions; that there had better be consensus about
what the security is trying to achieve; and that there are special cases, such as when
protecting smartcards against various attacks, where a proprietary encryption algorithm
embedded in the chip hardware can force the attacker to spend significantly more effort
in reverse engineering.

So where is the balance of benefit? Eric Raymond’s influential analysis of the eco-
nomics of open source software [635] suggests that there are five criteria for whether a
product would be likely to benefit from an open source approach: where it is based on
common engineering knowledge, rather than proprietary techniques; where it is sensi-
tive to failure; where it needs peer review for verification; where it is sufficiently busi-
ness-critical that users will cooperate in finding and removing bugs; and where its
economics include strong network effects. Security passes all these tests, and indeed
the long-standing wisdom of Kerckhoffs is that cryptographic systems should be de-
signed in such a way that they are not compromised if the opponent learns the tech-
nique being used [454]. There is increasing interest in open source from organizations
such as the U.S. Air Force [688, 689].

It’s reasonable to conclude that while an open source design is neither necessary nor
sufficient, it is often going to be helpful. The important questions are how much effort
was expended by capable people in checking and testing the code—and whether they
tell you everything they find.

23.4.3 Penetrate-and-Patch, CERTs, and bugtraq

Penetrate-and-patch is the name given dismissively in the 1970s and 1980s to the
evolutionary procedure of finding security bugs in systems and then fixing them; it was
widely seen at that time as inadequate, as more bugs were always found. At that time,
people hoped that formal methods would enable bug-free systems to be constructed.
With the realization that such systems are too small and limited for most applications,
iterative approaches to assurance are coming back into vogue, along with the question
of how to manage them.

Naturally, there’s a competitive element to this. The U.S. government’s wish is that
vulnerabilities in common products such as operating systems and communications
software should be reported first to authority, so that they can be exploited for law en-
forcement or intelligence purposes if need be, and that vendors should ship patches
only after unauthorized persons start exploiting the hole. Companies such as Microsoft
share source code and vulnerability data with intelligence agency departments engaged
in the development of hacking tools, and the computer emergency response teams
(CERTs) in many countries are funded by defense agencies. In addition, many feel that
the response of CERTs is somewhat slow. The alternative approach is open reporting
of bugs as they’re found—as happens on a number of mailing lists, notably bugtraq.

Neither approach is fully satisfactory. In the first case, you never know who saw the
vulnerability report before you did; and in the second case, you know that anyone in

Security Engineering: A Guide to Building Dependable Distributed Systems

538

the world could see it and use it against you before a patch is shipped. Perhaps a more
sensible solution was proposed in [631], under which a researcher who discovers a
vulnerability should first email the software maintainer. The maintainer will have 48
hours to acknowledge receipt, failing which the vulnerability can be published; the
maintainer will have a further five days to actually work on the problem, with a possi-
bility of extension by mutual negotiation. The resulting bug fix should carry a credit to
the researcher. Just before this book went to press, CERT agreed to start using this
procedure, only with a delay of 45 days for the vendor to design and test a fix [174].

This way, software companies have a strong incentive to maintain an attentive and
continually staffed bug-reporting facility, and in return will get enough time to test a
fix properly before releasing it; researchers will get credits to put on their CVs; users
will get bug fixes at the same time as bug reports; and the system will be very much
harder for the agencies to subvert.

23.4.4 Education

Perhaps as an academic, I’m biased, but I feel that the problems and technologies of
system protection need to be much more widely understood. I have seen case after case
in which the wrong mechanisms were used, or the right mechanisms were used in the
wrong way. It has been the norm for protection to be got right only at the fifth or sixth
attempt. With a slightly more informed approach, it might have been the second or
third. Security professionals unfortunately tend to be either too specialized and focused
on some tiny aspect of the technology, or else generalists who’ve never been exposed
to many of the deeper technical issues. But blaming the problem on the training we
currently give to students—whether of computer science, business administration, or
law—is too easy; the hard part is figuring out what to do about it. This book isn’t the
first step, and certainly won’t be the last word—but I hope it will be useful.

23.5 Summary

Sometimes the hardest part of a security engineering project is knowing when you’re
done. A number of evaluation and assurance methodologies are available to help. In
moderation they can be very useful, especially to the start-up firm whose development
culture is still fluid and is seeking to establish good work habits and build a reputation.
But the assistance they can give has its limits, and overuse of bureaucratic quality con-
trol tools can do grave harm. I think of them as like salt: a few shakes on your fries can
be a good thing, but a few ounces definitely are not.

But although the picture is gloomy, it doesn’t justify despondency. As people gradu-
ally acquire experience of what works, what gets attacked and how, and as protection
requirements and mechanisms become more part of the working engineer’s skill set,
things gradually get better. Security may be got right only at the fourth pass, but that’s
better than never—which was typical 15 years ago.

Life is chaotic. Success means coping with it. Complaining too much about it is the
path to failure.

Chapter 23: System Evaluation and Assurance

539

Research Problems

We could do with some new ideas on how to manage evaluation. Perhaps it’s possible
to apply some of the tools that economists use to deal with imperfect information, from
risk-pricing models to the theory of the firm. It would also be helpful if we had better
statistical tools to measure and predict failure.

Further Reading

An entire industry is devoted to promoting the assurance and evaluation biz, supported
by mountains of your tax dollars. Its enthusiasm can even have the flavor of religion.
Unfortunately, there are nowhere near enough people writing heresy.

