
Simulating Distributed
Denial of Service

with BreakingPoint

April 30, 2009

Dustin D. Trammell
<dtrammell@breakingpoint.com>

Todd Manning
<tmanning@breakingpoint.com>

BreakingPoint Labs
http://www.breakingpoint.com

Contents

1 Foreword 4

2 BreakingPoint System Preparation 5

3 Configuring the Network Neighborhood 7

3.1 Attack Traffic . 7

3.2 Duration and Throughput . 8

3.3 Mixing Attack Traffic with Legitimate Traffic . 12

3.3.1 Same Destination . 12

3.3.2 Multi-Destination . 13

4 Test Cases 16

4.1 TCP . 16

TCP-1 SYN Flood . 16

4.2 DNS . 17

DNS-1 Query for a Single Domain Name . 17

DNS-2 Queries to a Fixed Set of Domain Names . 17

DNS-3 Queries to Random Domain Names . 18

4.3 HTTP . 19

4.3.1 Resource-intensive Target URLs . 19

HTTP-1 Search Query . 19

HTTP-2 Authenticated Request . 19

HTTP-3 Large Response . 20

4.4 SMTP . 20

SMTP-1 Backscatter Flood . 20

4.5 VoIP . 21

1

VoIP-1 Low-Rate Call Flood . 21

A Introduction to Scripting with the BreakingPoint TCL Interface 23

B TCL Libraray (tcl.lib) 26

C TCL Script: 3.3.1 27

D TCL Script: TCP-1 29

E TCL Script: DNS-2 31

List of Figures

2.1 Import Test Menu . 5

3.1 Network Neighborhood . 8

3.2 Network Neighborhood: New Domain . 9

3.3 Network Neighborhood: Source Addresses . 9

3.4 Network Neighborhood: Target Address . 10

3.5 Host Configuration: Target . 10

3.6 Host Configuration: Server . 11

3.7 Test: Interfaces . 11

3.8 Rate Settings . 12

3.9 Same Destination Blended Traffic App Profile . 13

3.10 Test Application Profile Setting . 14

3.11 AppSim Component Interfaces . 14

3.12 Data Rate Parameters . 15

3

Chapter 1

Foreword

This paper and the accompanying test cases are intended to illustrate how the BreakingPoint products
can be used to simulate Distributed Denial-of-Service1 (DDoS) attacks using some of the product’s
various components.

The test cases provided for the scenarios described herein are meant to be provided as example material
and further tailored to suit the user’s specific needs. Note that the accompanying test cases were devel-
oped for the BreakingPoint Elite product. As such, import and use of these tests with the BreakingPoint
Appliance products (BPS 1K and BPS 10k) is not likely to be compatible.

It is also important to note that when modeling DDoS attacks, large numbers of individual hosts are
involved as well as large numbers of repetitive network packets or protocol sequences. While the AppSim
component’s User Interface is well-suited for creation of normal traffic scenarios, due to the time involved
in manually configuring DDoS scenarios with these large numbers of hosts and AppSim actions from
within the AppSim component User Interface, many of the test cases provided were created by utilizing
TCL scripting within the BreakingPoint TCL command interface. Individual test cases that have been
created this way will be accompanied by the script that created them, and a general introduction to
BreakingPoint TCL scripting can be found in Appendix A.

1A Distributed Denial-of-Service attack occurs when a large collection of multiple networked systems flood the
bandwidth or resources of a targeted system with individually small or insignificant packets or network sessions.[1]
When aggregated, the resultant traffic overwhelms the target.

4

Chapter 2

BreakingPoint System Preparation

Accompanying this document are a number of additional files. All of the files found within the “test-
cases” sub-directory ending with the “.bpt” extension are BreakingPoint Test files suitable for import
into your BreakingPoint Elite system. These files should be imported via the “Import Test” menu option
(Figure 2.1). Importing these files will set up the various Network Neighborhoods, SuperFlows, App
Profiles, and Tests which accompany the attack scenarios presented throughout this document. It is
expected that the reader inspect each test case in the BreakingPoint product while reading the related
section about its associated attack scenario to achieve full comprehension of the scenario discussed and
how the test case accomplishes simulation of such.

Figure 2.1: Import Test Menu

Also accompanying this document are files in the “bps-user-files” sub-directory. These files should be
uploaded to your BreakingPoint Elite system for use by the various AppSim SuperFlows. This can be
accomplished by browsing to the following URL on your BreakingPoint System’s web interface:

http://bps/Import.html?resource

5

Replace “bps” in the URL above with your system’s hostname or network address.

Chapter 3

Configuring the Network
Neighborhood

Unlike normal network traffic, DDoS traffic has some unique and significant properties. The general
traffic profile of a DDoS consists of an arbitrarily large number of network sources directing traffic at a
single or small group of targets. In addition to this attack traffic, there is also likely to be an arbitrary
amount of legitimate traffic traversing the same network.

As an example, if a web server is under a DDoS attack, while the attack traffic may be all directed at
port 80 and be consuming the web server’s resources so that it cannot accept or respond to legitimate
requests, those legitimate requests may still be traversing the network destined for the web server. In
addition, there is likely traffic on the network between other services on the web server and other network
systems, or among other network systems unrelated to the web server that is under attack.

To accomplish simulating this traffic profile, a customized Network Neighborhood is required. This
customized Network Neighborhood will be used by all of the test cases for the attack scenarios described
herein.

3.1 Attack Traffic

In order to simulate a DDoS of an arbitrary number of sources directing traffic at a single or small
group of targets, our custom Network Neighborhood will need a specially configured Domain to represent
this, which we will name the DDoS Domain. Specifically, the two networks configured in the DDoS
Domain as the Client (source) and Server (destination) sides of the sessions must be configured so that
the BreakingPoint system’s Network Processor is restricted to the appropriately sized pools of available
network addresses when generating traffic.

The simplest way to create a new custom Network Neighborhood is to copy the BreakingPoint Neigh-
borhood that is most applicable to the Device Under Test (DUT). For the purposes of this paper, a
copy of the BreakingPoint Switching Neighborhood will be used, named DDoS Switching. Browse to
the Network Neighborhood configuration screen by selecting the Network Neighborhood option from the
Control Center menu. If you prepared your BreakingPoint system as described in Chapter ??, the DDoS
Switching Neighborhood should already exist.

If you are creating this Network Neighborhood yourself, select the BreakingPoint Switching Neighborhood
from the list and then click Save As (Figure 3.1). Save the new Network Neighborhood as DDoS
Switching.

7

Figure 3.1: Network Neighborhood

Next, under both the Interface 1 and Interface 2 tabs, select the “New Domain” button and name the
new Domain “DDoS” (Figure 3.2). Interface 1 will be used as the source of the DDoS attack traffic and
Interface 2 will be used as the target, or destination.

Configure the DDoS Domain on Interface 1 with both a large network as well as a large Available Address
Range (Figure 3.3). This Available Address Range should reflect the size of the DDoS attacker’s botnet1

that will be simulated.

Configure Interface 2 to have the same network as Interface 1, however restrict its Available Address
Range to a single or small number of addresses (Figure 3.4). This Available Address Range should reflect
the simulated attack target(s). Due to the restricted Available Address Range in the DDoS Domain of
Interface 2, when configuring hosts for SuperFlows, only the intended DDoS target host(s) should be
attached to the “Server” interface (Figure 3.5), and all other hosts should be attached to the “Client”
interface (Figure 3.6).

Finally, all test cases described in this paper will use the DDoS Switching Neighborhood, and the Interfaces
of such tests must be configured to use the DDoS Domain (Figure 3.7). The default Domains were not
reconfigured for use as the DDoS traffic scenario so that they may be used in some tests to simulate
background or blended traffic mixes.

3.2 Duration and Throughput

The parameters relating to ramp-up, sustained, and ramp-down data rates, number of simultaneous
sessions, and so forth, can be configured via the Test screen for each individual test case (Figure 3.8).
Most test cases accompanying this paper use the default parameters. These are intended to be fine-tuned
by the user to suit the specific DDoS data rates desired.

1A botnet is a distributed but coordinated collection of compromised networked systems that can be commanded
and controlled by a central management system or network. Botnets are frequently employed to launch DDoS attacks.

Figure 3.2: Network Neighborhood: New Domain

Figure 3.3: Network Neighborhood: Source Addresses

Figure 3.4: Network Neighborhood: Target Address

Figure 3.5: Host Configuration: Target

Figure 3.6: Host Configuration: Server

Figure 3.7: Test: Interfaces

Figure 3.8: Rate Settings

3.3 Mixing Attack Traffic with Legitimate Traffic

There are two potentially desirable blended traffic scenarios including both attack traffic and legitimate
traffic in regard to a Distributed Denial of Service. The first scenario consists of blending legitimate
traffic destined for the target of the DDoS attack with the attack traffic itself. The second scenario
consists of blending legitimate background network traffic between unrelated hosts on the same network
with the attack traffic destined for the DDoS attack’s target.

3.3.1 Same Destination

To accomplish a blended mix of legitimate and attack traffic all destined for the same host, simply
include legitimate traffic SuperFlows alongside your attack traffic SuperFlow in the App Profile (Figure
3.9). Each SuperFlow included in the App Profile can then be weighted to define its presence in the
resultant traffic. Being a DDoS scenario, the attack traffic should far outweigh the legitimate traffic.

Note that due to all of this traffic being destined for the same host, the legitimate traffic chosen should
be appropriate for the simulated target, such as legitimate traffic of the same application or protocol as
the attack traffic, or core network protocols like DNS.

The creation of a SuperFlow and accompanying App Profile to simulate legitimate background DNS traffic
was accomplished through the use of the BreakingPoint TCL interface. The script used to generate this
SuperFlow can be found in Appendix C. This SuperFlow can be used as described here.

A test case has been included along with this paper to demonstrate this blended traffic scenario, entitled
“DDoS Blended Traffic Same Destination”, which makes use of the aforementioned Background DNS
SuperFlow.

Figure 3.9: Same Destination Blended Traffic App Profile

3.3.2 Multi-Destination

To accomplish generating background traffic that is not destined for the single or small number of network
addresses provided by the pool of available addresses in the DDoS Switching Network Neighborhood’s
DDoS Domain, the default domain which has no such restrictions must be used with a second AppSim
component in the test.

When creating a test, in addition to the first AppSim component which is set to your attack traffic’s
Application Profile (Figure 3.10) and the DDoS Domain, also include a second AppSim component. This
second AppSim component should have its Interfaces set to the default Domains (Figure 3.11) and its
App Profile set to the desired App Profile, such as the BreakingPoint Enterprise profile, which will provide
the legitimate background traffic. The AppSim Component’s “Data Rate” parameters will need to be
adjusted so that the interfaces that they are attached to do not become oversubscribed (Figure 3.12).

A test case has been included along with this paper to demonstrate this blended traffic scenario, entitled
“DDoS Blended Traffic Multi-Destination”, which makes use of the BreakingPoint Enterprise traffic
profile.

Figure 3.10: Test Application Profile Setting

Figure 3.11: AppSim Component Interfaces

Figure 3.12: Data Rate Parameters

Chapter 4

Test Cases

With all attack scenarios discussed herein, default configurations and settings are used for their associated
test cases unless otherwise noted. It is assumed in most cases that since these are Denial of Service
scenarios that the interest is in the request and or flood traffic while the responses are rather irrelevant,
or expected to be missing due to the target of the attack being too overwhelmed to actually respond.
Except in specific test cases where the responses are relevant, the server traffic has usually been omitted.

4.1 TCP

TCP-1 SYN Flood

This test case consists of a Session Sender test component. All parameters are default with the following
exceptions:

Test Parameters

1. The Destination Port . Port distribution type is set to “Constant”

2. The Destination Port . Minimum port number is set to “80”

3. The Session Ramp Distribution . Ramp Up Behavior is set to “SYN Only”

4. The Session Ramp Distribution . Steady State Behavior is set to “Open and Close with Reset
Response”

5. The Session Ramp Distribution . Ramp Down Behavior is set to “Reset”

6. The TCP Session Duration (segments) is set to 0

7. The Application Profile is set to “DDoS TCP-1”

These parameters will produce a flood of “half-open” TCP connections (SYN packets only) directed at
port 80 on the target(s).

The creation of this test case was accomplished through the use of the BreakingPoint TCL interface.
The script used to generate this test can be found in Appendix D.

16

4.2 DNS

DNS-1 Query for a Single Domain Name

This test case consists of an AppSim component configured to use an App Profile which contains a single
SuperFlow containing three hosts; the default Client and Server hosts, and a new third host called DNS
Server. The Server host is configured to a static hostname, “example.com” and bound to the “Client”
interface. This is the host that will provide the target hostname for the DNS Query. The DNS Server
host is configured to a static hostname, “dns.example.com”, and bound to the “Server” interface; this
host will be the target of the DDoS attack traffic. The DNS AppSim is used between the Client and
DNS Server hosts to query for the Server host. All parameters are default with the following exceptions:

Hosts Settings

1. Server

(a) Interface is set to “Client”

(b) Host Nickname is set to “example.com”

2. DNS Server

(a) Interface is set to “Server”

(b) Host Nickname is set to “dns.example.com”

Action Settings

1. Client Query Action

(a) Transaction Flag is set to “StartEnd”

(b) Host is set to “Server”

Test Parameters

1. Application Profile is set to “DDoS DNS-1”

DNS-2 Queries to a Fixed Set of Domain Names

This test case consists of an AppSim component configured to use an App Profile which contains a single
SuperFlow containing the two hosts, Client and DNS Server, as well as 50 randomly named hosts in the
form of “<randomstring>” with hostnames set to “<randomstring>.com”. The DNS AppSim is used
between the Client and DNS Server hosts to query for the randomized hosts. All parameters are default
with the following exceptions:

Hosts Settings

1. DNS Server

(a) Interface is set to “Server”

(b) Host Nickname is set to “dns.example.com”

2. 50 Randomized Servers

(a) Hostname is set to “<randomstring>”

(b) Interface is set to “Client”

(c) Host Nickname is set to “<randomstring>.com”

Action Settings

1. 50 Client Query Actions (one per randomized server)

(a) Transaction Flag is set to “StartEnd”

(b) Host is set to host “<randomstring>”

Test Parameters

1. Application Profile is set to “DDoS DNS-2”

The creation of this test case was accomplished through the use of the BreakingPoint TCL interface.
The script used to generate this test can be found in Appendix E.

DNS-3 Queries to Random Domain Names

This test case consists of an AppSim component configured to use an App Profile which contains a single
SuperFlow containing three hosts: the default Client and Server hosts, and a new third host called DNS
Server. The Server host is configured to a randomized hostname of the form “domain%n.com” where the
%n token will be interpolated with a unique number, and the host is set to the “Client” interface. This
host configuration provides the random domain names that the DNS Query targets. The DNS AppSim is
used between the Client and DNS Server hosts to query for the Server host. All parameters are default
with the following exceptions:

Hosts Settings

1. Server

(a) Interface is set to “Client”

(b) Host Nickname is set to “domain%n.com”

2. DNS Server

(a) Interface is set to “Server”

(b) Host Nickname is set to “dns.example.com”

Action Settings

1. Client Query Action

(a) Transaction Flag is set to “StartEnd”

(b) Host is set to “Server”

Test Parameters

1. Application Profile is set to “DDoS DNS-3”

Note, while the above domain name is effectively randomized, not every request on the wire will be
unique. The way the BreakingPoint system’s Network Processor streams data is by requesting that an
AppSim generate traffic, then it plays that traffic to the wire repeatedly while a new batch is generated.
Once the new batch is generated it is swapped in to replace the old batch. As such, traffic with identical
randomized domain name queries will appear on the wire.

4.3 HTTP

4.3.1 Resource-intensive Target URLs

Some DDoS attacks are accomplished not by traffic amplification but by causing a large amount of CPU
or memory resource consumption by the target by making specific, carefully chosen requests. Some such
requests involve search or database queries, authentication attempts that prompt use external back-end
services such as a RADIUS or Directory server, or requests that return an overly large amount of data
relative to the request that must be either dynamically generated or processed in order to be returned.

HTTP-1 Search Query

This test case consists of an AppSim component configured to use an App Profile which contains a single
SuperFlow containing the two default hosts, Client and Server. The HTTP AppSim is used to simulate a
single GET request from Client to Server. The usual HTTP 200 response has been omitted to simulate
an overwhelmed target not being able to respond. The GET request simulates a request to a search
function with an overly generic search term. All parameters are default with the following exceptions:

Action Settings

1. Client GET Action

(a) Transaction Flag is set to “Start”

(b) Request path is set to “/search?q=s”

Test Parameters

1. Application Profile is set to “DDoS HTTP-1”

HTTP-2 Authenticated Request

This test case consists of an AppSim component configured to use an App Profile which contains a
single SuperFlow containing the two default hosts, Client and Server. The HTTP AppSim is used to
simulate a single authenticated GET request from Client to Server. The usual HTTP response, whether
properly authenticated or not, has been omitted to simulate an overwhelmed target not being able to
respond. The GET request simulates a request to resources that require authentication on a server that
communicates with a back-end authentication authority to vet credentials. All parameters are default
with the following exceptions:

Action Settings

1. Client GET (authenticated) Action

(a) Transaction Flag is set to “StartEnd”

(b) HTTP Authentication scheme to use is set to “Digest Authentication”

Test Parameters

1. Application Profile is set to “DDoS HTTP-2”

HTTP-3 Large Response

This test case consists of an AppSim component configured to use an App Profile which contains a single
SuperFlow containing the two default hosts, Client and Server. The HTTP AppSim is used to simulate
a single GET request from Client to Server. The GET request simulates a request to resources that
return relatively large amounts of data in comparison to the request. This data is potentially dynamically
generated at the time of request, or is static but extremely large, causing a disproportional amount of
processing expenditure by the server in comparison to the client. All parameters are default with the
following exceptions:

Action Settings

1. Client GET Action

(a) Transaction Flag is set to “Start”

2. Server Response 200 (OK) Action

(a) Transaction Flag is set to “End”

(b) Random response min length is set to “50000000” (50 Megabytes)

(c) Random response max length is set to “100000000” (100 Megabytes)

Test Parameters

1. Application Profile is set to “DDoS HTTP-3”

4.4 SMTP

SMTP-1 Backscatter Flood

An SMTP backscatter flood is usually the resultant side-effect of a SPAM mailer sending an email
campaign with the source email address of the messages spoofed to appear as originating from an
innocent third party, commonly referred to as a “Joe Job” attack[2]. A percentage of the messages in
the SPAM campaign will be addressed to nonexistent addresses which causes the receiving mail servers to
respond to the messages with Delivery Service Notifications (DSNs) indicating the nonexistent address.
This flood of response DSN messages directed back at the innocent third party’s mail server is considered
a specific type of DDoS attack when the volume becomes large enough.

This test consists of an AppSim component configured to use an App Profile which contains a single
SuperFlow containing the two default hosts, Client and Server, representing a sending mail server and a
receiving mail server, respectively. The SMTP AppSim is used to send a DSN-style email message from
Client to Server. All parameters are default with the following exceptions:

Action Settings

1. Client Send HELO Action

(a) Transaction Flag is set to “Start”

2. Client Send RCPT Action

(a) To Address is set to “joe@example.com”

3. Client Send email (raw) Action

(a) Protocol To Address is set to “joe@example.com”

(b) Envelope To Address is set to “joe@example.com”

(c) Subject is set to “Failure Notice”

(d) Raw message is set to “dsn-email.txt”

4. Server 221 closing Action

(a) Transaction Flag is set to “End”

Test Parameters

1. Application Profile is set to “DDoS SMTP-1”

4.5 VoIP

VoIP-1 Low-Rate Call Flood

Not every DoS is the result of massive resources overwhelming the processing or bandwidth capacity of
its target. In some instances, such as a low-rate VoIP call flood, the target of the attack may not even
be the technology itself. In this scenario, the target is a human, having to cope with a constantly ringing
telephone. While a legitimate call may in fact get routed to the target telephony device along-side the
malicious calls, in many cases a human will actually DoS themselves by simply taking the phone off-hook.
These types of floods frequently fly below the radar as well due to their relatively low rate and the fact
that they may not actually overwhelm the target device’s bandwidth or resources.

This test case consists of an AppSim component configured to use an App Profile containing a single
SuperFlow containing the two default hosts, Client and Server, representing two SIP devices acting as
a UAC and UAS, respectively. The SIP AppSim is used to simulate a call setup procedure from Client
to Server. Only the SIP AppSim is employed to create a flood of call-setup sequences which simulates
causing the telephony device associated with the target user, via a specific telephone number, to ring.
The SuperFlow does not setup a VoIP media channel or convey any audio; the SIP UAC immediately
hangs-up the call upon answer by the UAS. This test case makes use of the timing parameters in the
test to properly simulate the low-rate nature of this DDoS. All parameters are default with the following
exceptions:

Flow Settings

1. Caller Phone Number is set to “(512)867-5309”

Test Parameters

1. Session Configuration . Maximum Simultaneous Sessions is set to “1”

2. Session Configuration . Maximum Sessions Per Second is set to “1”

3. Application Profile is set to “DDoS VoIP-1”

c©2005-2009 BreakingPoint Systems, Inc. All rights reserved. The BreakingPoint Logo is a trademark
of BreakingPoint Systems, Inc. All other trademarks are the property of their respective owners.

Appendix A

Introduction to Scripting with the
BreakingPoint TCL Interface

BreakingPoint provides a custom TCL shell that provides the API for controlling your devices. This shell
is used as the interpreter for TCL scripts, as well as an interactive shell. The interactive mode is a great
way to explore and learn the API. Customers can also read chapter 14 of the BreakingPoint UserGuide,
which can be downloaded from the BreakingPoint Systems Documentation page on StrikeCenter (au-
thentication required). The examples in this section are intended for use with appliances running the
1.2.3 BreakingPoint software release.

BreakingPoint Interactive TCL Shell

To get started, download the BreakingPoint TCL shell from the system start page. When you run it
from the command line (or from a script using the -i flag), you’ll get a familiar-feeling ’% ’ prompt. To
connect to your BreakingPoint box, issue something similar to the following:

% set host bpsbox
% set username elmo
% set password elmo
% set bps [bps::connect $host $username $password]

This sequence is so common that I have wrapped it inside a script I call harness.tcl, which parses its
command-line arguments, makes the initial connection, and then drops you into the interactive shell.

Once you’re connected, you can take a quick look at the commands and variables available for use by
issuing:

% lsort -increasing [info commands]
% lsort -increasing [info vars]

The listed commands will show usage information when you issue them without arguments, so you can
just experiment and see what each of the commands accept. Many variables are defined, but the variable
we care about at this point is the $bps variable, which represents the connection we have established to
the BreakingPoint appliance.

The $bps object gives commands to control many aspects of the device: tests, components, application
profiles, attack series, load profiles, DUTs, reports, and device management.

23

Running a Security Test with TCL

So let’s dive in and configure a simple test with a single Security component. The basic steps are:

1. Connect to the Chassis and reserve ports

2. Name the test

3. Add a security component

4. Set the test interfaces for the component

5. Save and run the test

6. Review the results

The code for this is pretty simple:

% set ch [$bps getChassis]
% $ch unreservePort 1 0
% $ch unreservePort 1 1
% $ch unreservePort 1 2
% $ch unreservePort 1 3
% $ch reservePort 1 0
% $ch reservePort 1 1
% set componentname security
% $bps configure -name "TCL Demo Test $componentname"
% set component [$bps createComponent $componentname tcldemo_$
{componentname}]
% $component setDomain server 1 default
% $component setDomain client 2 default
% $bps save -force
% $bps run
% set result [$component result]
% foreach p [$result values] { set v [$result get $p]; puts "$p == $v" }
% $bps exportReport -file TCL_Demo_Test_${componentname}_Result.pdf -
format pdf

This test will use the default DUT profile of ’BreakingPoint Default,’ and the default Network Neighbor-
hood of ’BreakingPoint Switching.’ If your test environment requires something different like routing,
you’ll need to issue the appropriate setDut and setNeighborhood commands before adding the compo-
nent. The two setDomain commands set the server and client sides of the security component, and
specify the default Ethernet and IP addressing domains. After running the test, we display the summary
results of the test. To get detail about what strikes were blocked, you need to view the report generated
from the exportReport call.

The nice thing about this code is that it’s general enough to run any component. You can set com-
ponentname in the first line to appsim, bitblaster, recreate, routingrobot, security, sessionsender, or
stackscrambler. The list of available components can be found by issuing ‘$bps createComponent false
false‘. This will show both the canned (BreakingPoint defined) as well as custom (customer defined)
components.

The automation afforded by using TCL has been invaluable in reducing the time it takes the BreakingPoint
Labs team to test and deploy StrikePacks. I know it will benefit anyone that takes the time to learn it.
Over the coming weeks, I’ll be sharing hints and code that will help BreakingPoint customers leverage

automation in their testing efforts. The next installment will focus on utilizing the Security component
to test IPS signatures. In the meantime, please download the code archive for this post and get started
with TCL!

The above content, and more about BreakingPoint system automation using TCL, can be found tagged
as “tcl” at the BreakingPoint Systems Blog[3].

Appendix B

TCL Libraray (tcl.lib)

proc randomStr ing { length { cha r s ”
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz”}} {
set range [expr { [s t r i ng length $cha r s]−1}]

set t x t ””
f o r { set i 0} { $ i < $ l e ng t h } { i n c r i } {

set pos [expr { i n t (rand () ∗$range) }]
append t x t [s t r i ng range $cha r s $pos $pos]

}
return $ t x t

}

26

Appendix C

TCL Script: 3.3.1

#!/ u s r / l o c a l / b i n /bpsh
source l i b . t c l

ARG hand l i n g
i f { [l l eng th $argv] >= 3 } {

set hos t [l i ndex $argv 1]
set username [l i ndex $argv 2]
set password [l i ndex $argv 3]

set c l i e n t i n t e r f a c e 1
set s e r v e r i n t e r f a c e 2

} e l s e {
set s c r i p tname [l i ndex $argv 0]
puts ” Usage : $ s c r i p tname <BPS ipaddr> <username> <password>”
ex i t −1

}

make su r e the d e v i c e i s n ’ t i n use by ano the r u s e r
i f { [catch { set bps [b p s : : c o n n e c t $hos t $username $password

−checkve r s i on f a l s e] }] } {
puts ” \ [!] E r r o r c o n n e c t i n g : $ e r r o r I n f o ”
ex i t −1

}
puts ” \ [∗] C o nn e c t e d . . . ”

set name ”Background DNS”
puts ” \ [∗] C r e a t i n g ${name} SuperFlow”
set s f [$bps c r e a t e Sup e r f l ow −name $name]
set count 50

puts ” \ [∗] C r e a t i n g DNS Se r v e r hos t ”
$ s f removeHost ” S e r v e r ”
$ s f addHost ”DNS Se r v e r ” t a r g e t ” dns .example .com ”

puts ” \ [∗] C r e a t i n g ${ count } random ho s t s ”
f o r { set i 0} { $ i < $count } { i n c r i } {

set length [expr i n t (rand () ∗6)+2]

27

set hostname [randomStr ing $ l e ng th]
set domainname ”${hostname} .com”
puts ” \ [+] $ s f addHost $hostname o r i g i n $domainname”
$ s f addHost $hostname o r i g i n $domainname

}
$ s f save −force

puts ” \ [∗] C r e a t i n g ${ count } DNS Que r i e s between C l i e n t and DNS Se r v e r ”
puts ” \ [+] Adding f l ow between C l i e n t and DNS Se r v e r ”
set f l ow i d [$ s f addFlow dnsadv C l i e n t ”DNS Se r v e r ”]

d i c t f o r { h o s t i d hos t } [$ s f ge tHos t s] {
i f {” C l i e n t ” ! =$host id && ”DNS Se r v e r ” ! =$host id } {

puts ” \ [+] Adding DNS r e qu e s t f o r $ h o s t i d ”
$ s f addAct ion $ f l ow i d c l i e n t dn s que r y −domainname $ho s t i d

}
}

puts ” \ [∗] Sav ing SuperFlow”
$ s f save −force

puts ” \ [∗] C r e a t i n g App P r o f i l e ${name}”
set ap [$bps c r e a t eAppP r o f i l e $name]
#$ap addSuper f l ow ”${ s f }” 100
$ap addSuper f l ow $name 100
$ap c o n f i g u r e −name $name

puts ” \ [∗] Sav ing App P r o f i l e ”
$ap save −force

puts ” \ [∗] Done ! ”

Appendix D

TCL Script: TCP-1

#!/ u s r / l o c a l / b i n /bpsh

ARG hand l i n g
i f { [l l eng th $argv] >= 3 } {

set hos t [l i ndex $argv 1]
set username [l i ndex $argv 2]
set password [l i ndex $argv 3]

set c l i e n t p o r t 0
set c l i e n t i n t e r f a c e 1
set s e r v e r p o r t 1
set s e r v e r i n t e r f a c e 2

} e l s e {
set s c r i p tname [l i ndex $argv 0]
puts ” Usage : $ s c r i p tname <BPS ipaddr> <username> <password>”
ex i t −1

}

make su r e the d e v i c e i s n ’ t i n use by ano the r u s e r
i f { [catch { set bps [b p s : : c o n n e c t $hos t $username $password

−checkve r s i on f a l s e] }] } {
puts ” \ [!] E r r o r c o n n e c t i n g : $ e r r o r I n f o ”
ex i t −1

}
puts ” \ [∗] C o nn e c t e d . . . ”

set name ”DDoS TCP−1 SYN Flood ”
puts ” \ [∗] C r e a t i n g t e s t ${name}”
$bps c o n f i g u r e −name $name

puts ” \ [∗] Adding Se s s i o nSende r Component”
set s s [$bps createComponent s e s s i o n s e n d e r {DDoS TCP−1}]
$ s s c o n f i g u r e −d s tPo r tD i s t . t y p e con s t an t −ds tPo r tD i s t .m in 80

−packe t sPe rSe s s i on 0 − r a t eD i s t .m in 400 − ra teDi s t .max 1000
− r a t eD i s t . t y p e random − se s s ions .maxPerSecond 500000 − s e s s i on s .max
5000000 − rampDist .upBehav io r syn − rampDist .downBehavior r s t
− r ampDi s t . s t eadyBehav io r c y c l e+r s t − rampDis t . s t eady 120

29

puts ” \ [∗] S e t t i n g Network Neighborhood to DDoS Sw i t ch i ng ”
$bps se tNe ighborhood ”DDoS Sw i t ch i ng ”
puts ” \ [∗] S e t t i n g i n t e r f a c e Domains to DDoS”
$s s setDomain c l i e n t $ c l i e n t i n t e r f a c e ”DDoS”
$s s setDomain s e r v e r $ s e r v e r i n t e r f a c e ”DDoS”

puts ” \ [∗] Sav ing Test ”
$bps save −force

puts ” \ [∗] Done ! ”

Appendix E

TCL Script: DNS-2

#!/ u s r / b i n / env bpsh
source l i b . t c l

ARG hand l i n g
i f { [l l eng th $argv] >= 3 } {

set hos t [l i ndex $argv 1]
set username [l i ndex $argv 2]
set password [l i ndex $argv 3]

set c l i e n t p o r t 0
set c l i e n t i n t e r f a c e 1
set s e r v e r p o r t 1
set s e r v e r i n t e r f a c e 2

} e l s e {
set s c r i p tname [l i ndex $argv 0]
puts ” Usage : $ s c r i p tname <BPS ipaddr> <username> <password>”
ex i t −1

}

make su r e the d e v i c e i s n ’ t i n use by ano the r u s e r
i f { [catch { set bps [b p s : : c o n n e c t $hos t $username $password

−checkve r s i on f a l s e] }] } {
puts ” \ [!] E r r o r c o n n e c t i n g : $ e r r o r I n f o ”
ex i t −1

}

puts ” \ [∗] C o nn e c t e d . . . ”

set name ”DDoS DNS−2”
puts ” \ [∗] C r e a t i n g SuperFlow ${name}”
set s f [$bps c r e a t e Sup e r f l ow −name $name]
set count 50

puts ” \ [∗] C r e a t i n g DNS Se r v e r hos t ”
$ s f removeHost ” S e r v e r ”
$ s f addHost ”DNS Se r v e r ” t a r g e t ” dns .example .com ”

31

puts ” \ [∗] C r e a t i n g ${ count } random ho s t s ”
f o r { set i 0} { $ i < $count } { i n c r i } {

set length [expr i n t (rand () ∗6)+2]
set hostname [randomStr ing $ l e ng th]
set domainname ”${hostname} .com”
puts ” \ [+] $ s f addHost $hostname o r i g i n $domainname”
$ s f addHost $hostname o r i g i n $domainname

}
$ s f save −force

puts ” \ [∗] C r e a t i n g ${ count } DNS Que r i e s between C l i e n t and Se r v e r ”
puts ” \ [+] Adding f l ow between C l i e n t and DNS Se r v e r ”
set f l ow i d [$ s f addFlow dnsadv C l i e n t ”DNS Se r v e r ”]

d i c t f o r { h o s t i d hos t } [$ s f ge tHos t s] {
i f {” C l i e n t ” ! =$host id && ”DNS Se r v e r ” ! =$host id } {

puts ” \ [+] Adding DNS r e qu e s t f o r $ h o s t i d ”
$ s f addAct ion $ f l ow i d c l i e n t dn s que r y −domainname $ho s t i d

− t r a n s f l a g s t a r t e n d
}

}

$ s f save −force

puts ” \ [∗] C r e a t i n g App P r o f i l e ${name}”
set ap [$bps c r e a t eAppP r o f i l e $name]
$ap addSuper f l ow $name 100
$ap c o n f i g u r e −name $name
$ap save −force

puts ” \ [∗] C r e a t i n g AppSim ${name}”
set appsim [$bps createComponent appsim $name]
$appsim c o n f i g u r e − p r o f i l e [$ap cge t −name]

puts ” \ [∗] S e t t i n g Network Neighborhood to DDoS Sw i t ch i ng ”
$bps se tNe ighborhood ”DDoS Sw i t ch i ng ”
puts ” \ [∗] S e t t i n g i n t e r f a c e Domains to DDoS”
$appsim setDomain c l i e n t $ c l i e n t i n t e r f a c e ”DDoS”
$appsim setDomain s e r v e r $ s e r v e r i n t e r f a c e ”DDoS”

set name ”DDoS DNS−2 Repeated Que r i e s to a F i xed Set o f Domain Names”
puts ” \ [∗] C r e a t i n g t e s t ${name}”
$bps c o n f i g u r e −name $name

puts ” \ [∗] Sav ing Test ”
$bps save −force

puts ” \ [∗] Done ! ”

Bibliography

[1] Wikipedia. Denial-of-service attack - distributed attack. http://en.wikipedia.org/wiki/
Denial-of-service attack#Distributed attack, February 2009.

[2] Wikipedia. Joe job. http://en.wikipedia.org/wiki/Joe job, January 2009.

[3] Todd Manning. Tcl tagged blog posts. http://www.breakingpointsystems.com/community/
blog/tags/tcl, January 2009.

33

http://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_attack
http://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_attack
http://en.wikipedia.org/wiki/Joe_job
http://www.breakingpointsystems.com/community/blog/tags/tcl
http://www.breakingpointsystems.com/community/blog/tags/tcl

	Foreword
	BreakingPoint System Preparation
	Configuring the Network Neighborhood
	Attack Traffic
	Duration and Throughput
	Mixing Attack Traffic with Legitimate Traffic
	Same Destination
	Multi-Destination

	Test Cases
	TCP
	SYN Flood

	DNS
	Query for a Single Domain Name
	Queries to a Fixed Set of Domain Names
	Queries to Random Domain Names

	HTTP
	Resource-intensive Target URLs
	Search Query
	Authenticated Request
	Large Response

	SMTP
	Backscatter Flood

	VoIP
	Low-Rate Call Flood

	Introduction to Scripting with the BreakingPoint TCL Interface
	TCL Libraray (tcl.lib)
	TCL Script: 3.3.1
	TCL Script: TCP-1
	TCL Script: DNS-2

