Context-keyed Payload
Encoding

Drtid <druid@caughg.erg>
Computer Academic Undergreund

whoami

)ruid
http://druid.caughg.org/

‘Founder, Computer Academic Underground
http://www.caughg.org/

~ Co-Founder, AHA! (Austin Hackers Association)
http://www.austinhackers.org/

“Employed by BreakingPoint Systems, Inc.

http://www.bpointsys.com

Payload Encoders

~'Encoder:
' Encodes the payload prior to exploit packaging
2! Prepends a decoder stub to the original payload

~'Decoder stub:
2 Prepended to original payload
2 Executes first on the target
2/ Responsible for decoding the original payload
- Executes the original payload once decoded

Why are they used?

2~*Evade detection of common payloads

' Filtering of traffic containing the likes of:
< exec of /bin/sh or other shells
2!adduser commands
~interaction with /etc/passwd

Yetc...

~'Restricted payload byte values:
2! Input filtered for non-alphanumeric

~* Payload must pass through modification functions:
“‘tolower() / toupper()
' Character set conversions

Encoder Examples

~Metasploit (x86):

Alpha2 Alphanumeric Mixed-cased

2 Alpha2 Unicode Mixed-cased

2 Avoid UTF-8 and tolower()

2 Call+4 Dword XOR

2 Polymorphic XOR Additive Feedback (Shikata Ga Nai)

The Problem

Inherent expected functionality:
The decoder stub must be able to decode the payload

“Existing payload encoders either:

Don’t use a key at all
Use a key that is statically included in the decoder stub

“Observer can capture the payload and
easily decode it for analysis

~All'encoding methods I've found suffer
from this problem

How can this improve?

~“Always use a keyed encoder
~Don’t include the key in the decoder stub!

2¢But then how does the decoder get the key?

Context-keyed Payload
Encoding

Definitions

< Contextual Keying - The process of key selection
from context information that is either known or
predictable about the target.

2+ Context-key - The key value resulting from the
contextual keying process.

2~/ Context-address - The address at which the
context-key will be found on the target.

< Memory Map - A file containing chunks of static
data and their location addresses as will be found
within an application upon execution.

Context-keyed Encoder

~'Encoder
Z!Encodes the payload prior to exploit packaging using
the context-key
- Prepends the decoder stub to the original payload

2*Decoder stub:
2 Prepended to original payload
2 Executes first on the target

“* Responsible for:
“LLocating or generating the context-key
“'Decoding the original payload

2< Executes the original payload once decoded

Usable Context

“There are known knowns; there are things we know that we
know. We also know there are known unknowns; that is to
say, we know there are some things we do not know. But
there are also unknown unknowns; the ones we don’t know
we don’t know.” -- Donald Rumsfeld

Context: Static Application Data

2~ Easy to profile if an attacker can reproduce:
2< Application’s operating environment
< Execution of the target application
Z2¢Also easy if the attacker has access to the
application executable or linked libraries

2~ Context-key can be chosen from static values
found In the process’'s memory

2~ Can use known locations of static values such as:
2 Environment variables
2< Static strings
Z< The application’s executable instructions (.text)

Profiling an Application

2<Create an application memory map from
one or more of the following methods:

2 Repeatedly poll a running process’'s memory,
eliminating the locations of changing data

4 Parse an application executable or dynamically-linked
library’s .text data and locations where it will be mapped
IN memory

smem-map

‘Linux application

‘Relies on /proc/<pid>/maps for memory locations
~~WIll also do an exhaustive search of all memory
2~ Relies on /proc/<pid>/mem for access to memory
< Repeatedly polls the memory locations
2~ Eliminates data that changes
s smem-map <pid> <output.map>

< Results in a memory map of a process’s static data
InN memory

“http://sourceforge.net/projects/smem-map/

msfpescan

“Metasploit Framework tool

“Targets Portable Executable formatted
files

~“Parses files for sections with data which
will be loaded into memory such as .text

Amsfpescan --context-map <outdir> <files>

“Results in a memory map of an executable
or library’s static data in memory

“http://www.metasploit.com

Memory Map

File contains data structures for each

chunk of data:
8-bit: Data Type
32-bit: Chunk base address
32-bit: Chunk size (in octets)
Size: Chunk Data

~010Editor Template Available:

With smem-map package from SourceForge
http://druid.caughg.org/src/

Context: Event Data

“Transient data may also be used as long
as it persists long enough for the decoder
stub to access it

“Applications that you are exploiting
generally accept input somehow

~“Data sent prior to or with the exploit may
end up in a known location

Context: Temporal Data

2<skape introduced the concept of temporal
addresses

z<Location in memory that holds timer data:
Z< System time
2 Uptime
2+ Other types of counters

25 Contents originally used as viable return
instructions for exploitation

25 Suffers from some restrictions:

< Window during which you can actually send the exploit

ZJ Data is called directly as instructions, may be marked non-
executable

Context: Temporal Data

2<\When used as a context-key there are fewer
constraints:
2< Data must not change during use of it as a context-key
2x Data remains viable provided:
~|t’s used within it's update time window

~When used as an encoding key it doesn’t produce bad
payload byte values

2~'Must be able to predict the value of the temporal data

2 Frequently changing data is not useful as a context-
key

2~'Some timers are large enough that parts of them
change infrequently

Temporal Data Case Study

~Windows NT+ SystemTime is:
“An 8 (12) byte timer
2100 nanosecond resolution
“* Epoch of January 1st, 1961

~Mapped into every process at a known location as part
of the SharedUserData region of memory

Windows SystemTime

2~ Byte Indices update frequency:
250 =<1 second
21 =<1 second
725 2 =<1 second
2x' 3 = 1 second
¢4 = 429 secs (7 mins 9 secs)
< 5 = 109951 secs (1 day 6 hours 32 mins 31 secs)
75 6 = 28147497 secs (325 days 18 hours 44 mins 57 secs)
<7 = 7205759403 secs (228 years 179 days 23 hours 50 mins 3 secs)

ileen the desired length of the key, the window of
opportunity can be quite large

2x The smaller the desired length of the key, the less exact
the prediction of the target’s system time needs to be

Context-key Selection

“Using memory map static chunks as data
source.

Select sequential data at any address that is large
enough to use as a context-key

Check that the result of encoding the payload using that
key does not violate any byte value restrictions

* Check that the context-address does not violate any
byte value restrictions

'If everything is good, note the context-key’s value and
context-address

Encoding/Decoding with Context

~*Encoder gets the context-key value and
produces an encoded payload as usual

~*Decoder stub gets the context-address
and is prepended to the encoded payload

“When the decoder stub executes, It:
! Retrieves the context-key from the context-address
! Decodes as usual.

Proof of Concept

Metasploit's Shikata Ga Nai

~Updated to optionally use context-keys
Instead of randomly generated

~“From MSF Console:

(regular exploit & payload commands)

set ENCODER x86/shikata_ga nai

set EnableContextEncoding 1

set ContextInformationFile application.map
exploit

ms04-007 vs. XP-SPO
2/Create Memory Map

2 msfpescan --context-map context Isass-dlls/*
2 cat context/* >> Isass.exe.map

~*Metasploit:
2! use exploit/windows/smb/ms04-007-killbill
2 set PAYLOAD windows/shell _bind_tcp
2'set ENCODER x86/shikata_ga nai
2Jset EnableContextEncoding 1
~J set ContextInformationFile Isass.exe.map
= exploit

Conclusions

Q&A

