cc/td/doc/cisintwk
hometocprevnextglossaryfeedbacksearchhelp
PDF

Table of Contents

Using ISDN Effectively in Multiprotocol Networks

Using ISDN Effectively in Multiprotocol Networks

As telephone companies make Integrated Services Digital Network (ISDN) services available, ISDN is becoming an increasingly popular way of connecting remote sites. This case study covers the following ISDN scenarios:

Configuring DDR over ISDN

In the United States, many companies today regard telecommuting as a way to solve space problems, conform to the Clean Air Act, and make employees more productive. In Europe, companies are looking for solutions that allow central offices to connect to remote sites. In the past, analog modems provided the necessary connectivity over serial lines, but they are not fast enough for LAN-to-LAN connections or for remote use of graphical programs, such as computer-aided design (CAD) tools. ISDN provides the needed additional bandwidth without requiring a leased line.

An ISDN Basic Rate Interface (BRI) provides two 64-kilobits-per-second (Kbps) B channels for voice or data and one 16-Kbps D channel for signaling. Voice and data information is carried over the B channels digitally. In the United States, an ISDN Primary Rate Interface (PRI) provides 23 64-Kbps B channels for voice and data over a T1 connection, and one 64-Kbps D channel for signaling. In Europe, a PRI provides 30 B channels for voice and data and one D channel for signaling over an E1 connection.

Figure 21-1 shows the network that will be discussed in this case study. The ISDN network uses multiple central office ISDN switches.


Figure 21-1:
ISDN network example.


In this case study, the remote sites (homes) use Cisco 2503 routers, which provide one BRI, an Ethernet interface, and two high-speed serial interfaces. At the central company site, a Cisco 7000 series router equipped with a channelized T1 card answers the calls. The channelized T1 card provides a PRI.

Currently in many parts of the United States, telephone companies have not deployed Signaling System 7, which means that calls between certain central offices must be placed at 56 Kbps. This restriction does not apply to all parts of the United States or to other countries, but it does apply to some of the sample ISDN networks described in this chapter.

Native ISDN Interfaces

If you are using an external ISDN terminal adapter, also known as an ISDN modem, you can use the configuration examples provided in "Dial-on-Demand Routing." Although an ISDN modem provides ISDN connectivity and allows you to use existing serial interfaces, it is not always the optimal solution because of the investment in an external unit and in additional cabling. Also, using V.25bis does not give the router full access to certain information that is available in an ISDN network, such as the speed of the call or the number of the calling party.

The native ISDN interface on the Cisco 2503 router allows the router to be directly connected to an ISDN NT1 device. In many countries, the NT1 is provided by the telephone company. In the United States, however, the NT1 is customer-owned equipment. By directly connecting to the ISDN network, the router has more direct control over ISDN parameters and has access to ISDN information.

Configuring an ISDN Interface

Configuring a native ISDN interface is similar to configuring a serial interface using DDR routing as described in "Dial-on-Demand Routing." There are two major differences:

The following sections describe the configurations of the central site and the home site routers. In this case study, both the central site and the home sites can place calls. The central site uses a Cisco 7000 router that connects to a NorTel DMS-100 central office ISDN switch. One remote site router (nick-isdn) connects to the same central office switch that the central site router uses. Connections from the other remote site router (dave-isdn) pass through two central office switches to reach the central site router.

Central Site

Two remote site users, Dave and Nick, dial from their homes into the central site router that is configured as follows. Part of the configuration of the central site router is specific to the DMS-100 switch, whereas other commands apply to any type of ISDN central office switch.

hostname central-isdn
!
username dave-isdn password 7 130318111D
username nick-isdn password 7 08274D02A02
isdn switch-type primary-dms100
!
interface ethernet 0
ip address 11.108.40.53 255.255.255.0
no mop enabled
!
controller t1 1/0
framing esf
linecode b8zs
pri-group timeslots 2-6
!
interface serial 1/0:23
ip address 11.108.90.53 255.255.255.0
encapsulation ppp
dialer idle-timeout 300
dialer map ip 11.108.90.1 name dave-isdn speed 56 914085553680
dialer map ip 11.108.90.7 name nick-isdn 8376
dialer-group 1
ppp authentication chap
!
router igrp 10
network 11.108.0.0
redistribute static
!
! route to nick-isdn
ip route 11.108.137.0 255.255.255.0 11.108.90.7
! route to dave-isdn
ip route 11.108.147.0 255.255.255.0 11.108.90.1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!NTP
access-list 101 deny udp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 eq 123
!SNMP
access-list 101 deny udp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 eq 161
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
dialer-list 1 list 101

The configuration begins by establishing the host name of the router. The username global configuration commands establish the names of the routers that are allowed to dial up this router. The names correspond to the host names of Dave's router and Nick's router. The isdn switch-type command global configuration command specifies that the central site router connects to a NorTel DMS-100 switch. The host name, usernames, and ISDN switch type vary from router to router.

Controller Configuration

The controller global configuration command uses T1 to specify a T1 controller interface. The "1" indicates that the controller card is located in backplane slot number 1. The "0" indicates port 0.

The framing controller configuration command selects the frame type for the T1 data line. In this case, the framing command uses the esf keyword to indicate the extended super frame (ESF) frame type. The service provider determines which framing type, either sf, esf, or crc4, is required for your T1/E1 circuit.

The linecode controller configuration command defines the line-code type for the T1 data line. In this case, the linecode command uses the b8zs keyword to indicate that the line-code type is bipolar 8 zero substitution (B8ZS). The service provider determines which line-code type, either alternate mark inversion (AMI) or B8ZS, is required for your T1/E1 circuit.

The pri-group controller configuration command specifies an ISDN PRI on a channelized T1 card in a Cisco 7000 series router. The timeslots keyword establishes the B channels. In this example, only five B channels (channels 2 through 6) are in use on this controller.

Interface Configuration

The ip address interface configuration command establishes the IP address of the interface, and the encapsulation ppp command establishes the Point-to-Point protocol (PPP) as the encapsulation method. PPP supports Challenge Handshake Authentication Protocol (CHAP) and Password Authentication Protocol (PAP) as authentication mechanisms for identifying the caller and providing a level of security. The dialer idle-timeout interface configuration command sets the idle timeout to five minutes.

The dialer map interface configuration commands establish the remote sites that the router can call. Because Dave's router connects to a central office switch that does not use Signaling System 7, the dialer map command for calling Dave's router uses the speed keyword, which is valid for native ISDN interfaces only. The native ISDN interface on the Cisco 2503 operates at either 64 or 56 Kbps. If the calling party and the called party use the same ISDN switch, they can communicate at 64 Kbps. Otherwise, they must communicate at 56 Kbps.

Because Nick's ISDN line connects to the same central office as the line that the central site router uses, the telephone number in the dialer map command for connecting to Nick's router does not have to include the three-digit prefix. Note that because the central site router uses lines that are part of a Centrex, the outgoing telephone numbers start with 9 if they are not four-digit numbers.

The dialer-group interface configuration command associates the BRI with dialer access group 1. The ppp authentication chap interface configuration command enables CHAP authentication.

Routing Configuration

In the routing section of the configuration, the router igrp global configuration command enables the Interior Gateway Routing Protocol (IGRP) and sets the autonomous system number to 10. The network router configuration command assigns the network number. The redistribute router configuration command sends the static route information (defined with the ip route global configuration commands) to other routers in the same IGRP area. Without this command, other routers connected to the central site would not have routes to the remote routers.

DDR tends to use static routes extensively because routing updates are not received when the dial-up connection is not active. The first two ip route commands create the static routes that define the subnets that Dave and Nick use.


Note The IGRP commands are the same on all central site routers, except that the static routes correspond to the home sites calling into each central site router.
Access List Configuration

DDR uses access lists to determine whether a packet is interesting or uninteresting. Interesting packets cause a call to be placed if a call is not active or cause a call that has already been placed to be maintained as active. The first extended access-list global configuration command states that IGRP updates are uninteresting. The second extended access-list command states that Network Time Protocol (NTP) packets are uninteresting. The third extended access-list command specifies that Simple Network Management Protocol (SNMP) packets are uninteresting, and the final extended access-list command states that all other IP packets are interesting. The dialer-list list global configuration command assigns the set of access lists to dialer access group 1.

Home Site

The configurations of the home site routers are similar, but Nick's configuration is simpler because his router connects to the same central office switch as the central site router.

Nick

The configuration for the router at Nick's home is as follows:

hostname nick-isdn
!
username central-isdn password 7 050D130C2A5
isdn switch-type basic-dms100
!
interface ethernet 0
ip address 11.108.137.1 255.255.255.0
no mop enabled
!
interface bri 0
ip address 11.108.90.7 255.255.255.0
encapsulation ppp
no ip route-cache
isdn spid1 415555837601 5558376
isdn spid2 415555837802 5558378
dialer idle-timeout 300
dialer map ip 11.108.90.53 name central-isdn 8362
dialer map ip 11.108.90.53 name central-isdn 8370
dialer-group 1
ppp authentication chap
!
ip route 11.108.0.0 255.255.0.0 11.108.90.53
!
access-list 101 deny udp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 eq 177
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
dialer-list 1 list 101

As with the central site router, the isdn switch-type global configuration command specifies that the switch is an NT DMS-100 switch. Because Nick's router connects to the DMS-100, SPIDs are required for the BRI. PPP and CHAP are configured, along with a username command for the central site router. The configuration for Nick's router differs from that of the central site with regard to the dialer map commands and the routing section. Two dialer map commands point to the same next-hop address. If the attempt to call the first number fails, the second number will be used to connect to the next-hop address.

The isdn spid1 and isdn spid2 interface configuration commands represent service profile identifiers (SPIDs). SPIDs are used when a BRI connects to a NorTel DMS-100 switch or a National ISDN-1 switch. SPIDs are assigned by the service provider to associate a SPID number with a telephone number. Other switch types do not require SPIDs. Your service provider can tell you if SPIDs are required for your switch. In this example, SPID 1 identifies 415 as the area code, 555 as the exchange, 8376 as the station ID, and 01 as the terminal identifier. The SPID format required by your service provider may differ from the examples shown in this case study.

Dave

The configuration for Dave's router is similar to the configuration for Nick's router, except that Dave's router is not in the same Centrex as the central company site. The configuration for Dave's router is as follows:

hostname dave-isdn
!
username central-isdn password 7 08274341
isdn switch-type basic-5ess
!
interface ethernet 0
ip address 11.108.147.1 255.255.255.0
no mop enabled
!
interface bri 0
ip address 11.108.90.1 255.255.255.0
encapsulation ppp
no ip route-cache
bandwidth 56
dialer map ip 11.108.90.53 name central-isdn speed 56 14155558370
dialer-group 1
ppp authentication chap
!
ip route 11.108.0.0 255.255.0.0 11.108.90.53
!
dialer-list 1 list 101

Dave's configuration is different from Nick's configuration because Dave's router connects to an AT&T 5ESS central office ISDN switch that does not run Signaling System 7. The isdn switch-type global configuration command specifies a basic rate AT&T switch, which does not require Dave's router configuration to use the isdn spid1 and isdn spid2 interface configuration commands that the DMS-100 switch requires. The bandwidth interface configuration command tells routing protocols that the line operates at 56 Kbps. The dialer map interface configuration command uses the speed keyword so that when Dave's router dials up the central site router, it sets the line speed to 56 Kbps. This setting is necessary when the connection traverses a switch that does not run Signaling System 7.

Configuring Calling Line Identification Numbers

Because Nick is in the same Centrex as the central company routers, the central router can use the Calling Line Identification (CLID) number received from the ISDN switch to identify Nick. With CLID, the configuration for Nick does not require CHAP or PAP; however, Nick needs to modify his configuration to include CLID. Nick's new configuration and a sample of the central site changed configuration are shown in the following sections.


Note CLID is not available in all parts of the United States and other countries. Some countries do not require Centrex for CLID.

Central Site

Here is the central site PRI interface configuration modified for CLID:

controller t1 1/0
framing esf
linecode b8zs
pri-group timeslots 2-6
!
interface serial 1/0:23
ip address 11.108.90.53 255.255.255.0
dialer idle-timeout 300
dialer map ip 11.108.90.7 name 5558376 8376
dialer-group 1

The name keyword in the dialer map interface configuration command specifies the actual string that calling line identification returns. This string differs from the number called: the number called is a four-digit Centrex number, and the number returned is the full seven digits.

Home Site

As with the central site, the major difference in Nick's configuration is the use of the name keyword with the dialer map command that specifies the actual number being returned as the calling line number.

interface bri 0
ip address 11.108.90.7 255.255.255.0
no ip route-cache
isdn spid1 415555837601 5558376
isdn spid2 415555837802 5558378
dialer idle-timeout 300
dialer map ip 11.108.90.53 name 5558362 8362
dialer map ip 11.108.90.53 name 5558370 8370
dialer-group 1

Note If the debug isdn-q931 EXEC command is enabled, the decode for an incoming call setup can be seen and the CLID number will be shown.

Configuring Callback

Because Dave is located several miles from the central office, calls to the central office router are metered and billed to Dave's telephone number. The callback feature (introduced in Cisco IOS 11.0) allows Dave's router to place a call to the central site router requesting that the central site router call Dave's router. Then the central site router disconnects the call and places a return call to Dave's router.With callback configured, Dave's telephone bill is reduced because actual data transfers occur when the central office router calls back. The following commands configure callback on Dave's router:

interface bri 0
ppp callback request
dialer hold-queue 100 timeout 20

The ppp callback interface configuration command with the request keyword specifies that when the interface places a call, it is to request callback. The dialer hold-queue interface configuration command specifies that up to 100 packets can be held in a queue until the central site router returns the call. If the central site router does not return the call within 20 seconds plus the length of the enable timeout configured on the central site router, the packets are dropped. The following commands configure callback on the central office router:

map-class dialer class1
dialer callback-server username
interface serial 1/0:23
dialer map ip 11.108.90.1 name dave-isdn speed 56 class class1 914085553680
ppp callback accept
dialer callback-secure
dialer enable-timeout 1
dialer hold-queue

The map-class global configuration command establishes a quality of service (QoS) parameter that is to be associated with a static map. The dialer keyword specifies that the map is a dialer map. The class1 parameter is a user-defined value that creates a map class to which subsequent encapsulation specific commands apply.

The dialer map interface configuration command has been modified to include the class keyword and the name of the class, as specified in the map-class command. The name keyword is required so that, when Dave's router dials in, the interface can locate this dialer map statement and obtain the dial string for calling back Dave's router.

The ppp callback interface configuration command with the accept keyword allows the interface to accept and honor callback requests that come into the interface. (Callback depends on PPP authentication, using PAP or CHAP.)

The dialer callback-server map class configuration command allows the interface to return calls when callback is successfully negotiated. The username keyword specifies that the interface is to locate the dial string for making the return call by looking up the authenticated host name in a dialer map command.

The dialer callback-secure interface configuration command specifies that the router is to disconnect the initial call, and call back only if it has a dialer map command with a defined class for the remote router. If the dialer callback-secure command is not present, the central router will not drop the connection if it does not have a dialer map command with a defined class. The dialer enable-timeout interface configuration command specifies that the interface is to wait one second after disconnecting the initial call before making the return call.

Configuring Snapshot Routing over ISDN

Snapshot routing is an easy way to reduce connection time in ISDN networks by suppressing the transfer of routing updates for a configurable period of time. Snapshot routing is best suited for networks whose data-transfer connections typically last longer than five minutes and that are running the following distance-vector protocols:

The goal of snapshot routing is to allow routing protocols to exchange updates as they normally would. Because Enhanced IGRP and link-state routing protocols, such as Novell Link Services Protocol (NLSP), Open Shortest Path First (OSPF), and Intermediate System-to-Intermediate System (IS-IS) depend on the frequent sending of hello messages to neighboring routers in order to discover and maintain routes, they are incompatible with snapshot routing.


Note This case study applies snapshot routing to an ISDN network, but other similar media, such as dedicated leased lines, can benefit from the reduction of periodic updates that snapshot routing provides.

Before snapshot routing became available in Cisco Internetwork Operating System (IOS) Software Release 10.2, ISDN interfaces were configured using static routes. Static routes, such as the routes defined by the ip route commands in the "Central Site" section earlier in this chapter, prevent bandwidth from being consumed by routing updates, but they are difficult to maintain as the network grows.

Snapshot routing supports dynamic routes by allowing routing updates to occur during an active period and reduces connection cost by suppressing routing updates during a quiet period, which can be up to 65 days long. During the quiet period, the routing tables on the routers at both ends of a link are frozen. Figure 21-2 shows the relationship of active and quiet periods over time.


Figure 21-2: Active periods and frozen periods over time.


During the active period, the routers at each end of the connection exchange the routing updates that are normal for their configured routing protocols. They continue to exchange routing updates until the active period ends. When the active period ends, each router freezes its routing tables, stops sending routing updates, and enters the quiet period. Each router remains in the quiet period until a configurable timer expires, at which time one of the routers initiates a connection to send and receive routing updates.

To ensure that routing tables are updated, the active period must be long enough for several routing updates to come through the link. An active period that is too short might allow only one routing update to cross the link. If that update is lost due to noise on the line, the router on the other end would age out a valid route or would not learn about a new valid route. To make sure that updates occur, the active period must be at least five minutes long (that is, three times longer than the routing protocols' update interval). Because the routing protocols update their routing tables during the active period as they normally would, there is no need to adjust any routing protocol timers.

If the line is not available when the router transitions from the quiet period to the active period, it enters a retry period. During the retry period, the router continually attempts to connect until it enters an active period, as shown in Figure 21-3.


Figure 21-3: The router continually attempts to connect during the retry period.


Table 21-1 shows the minimum and maximum lengths of each period.


Table 21-1:
Snapshot Routing Periods
Period Configurable Minimum Length Maximum Length

Active

Yes

5 minutes

100 minutes

Quiet

Yes

5 minutes

65 days

Retry

No

8 minutes

8 minutes

By default, snapshot routing allows routing updates to be exchanged over connections that are established to transfer user data. This means that, if necessary, snapshot routing forces the connection to last as long as the active period. If you do not want the routers to exchange updates during connections that are established to transfer user data, use the suppress-statechange-updates keyword.

Upgrading the Telecommuting Network

Snapshot routing is well-suited to the hub-and-spoke topology of the telecommuting network described in the "Configuring DDR over ISDN" section at the beginning of this chapter. Snapshot routing is designed for a client-server relationship. The client routers, such as the home sites, determine the frequency at which the routers exchange updates by setting the length of the quiet period, and the server router accepts incoming snapshot connections from several client routers.


Note Snapshot routing is not recommended for meshed topologies. In meshed topologies, configuring static routes is more efficient than configuring snapshot routing.

Central Site Modified for Snapshot Routing

The following is the configuration of the central site router after modification for snapshot routing:

hostname central-isdn
!
username dave-isdn password 7 130318111D
username nick-isdn password 7 08274D02A02
isdn switch-type primary-dms100
!
interface ethernet 0
ip address 11.108.40.53 255.255.255.0
no mop enabled
!
controller t1 1/0
framing esf
linecode b8zs
pri-group timeslots 2-6
ip address 11.108.90.53 255.255.255.0
encapsulation ppp
dialer idle-timeout 300
dialer map ip 11.108.90.1 name dave-isdn speed 56 914085553680
dialer map ip 11.108.90.7 name nick-isdn 8376
dialer-group 1
isdn spid1 415555836201 5558362
isdn spid2 415555837002 5558370
snapshot server 5

ppp authentication chap
!
router igrp 10
network 11.108.0.0
redistribute static
!
! route to nick-isdn
ip route 11.108.137.0 255.255.255.0 11.108.90.7
! route to dave-isdn
ip route 11.108.147.0 255.255.255.0 11.108.90.1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!NTP
access-list 101 deny udp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 eq 123
!SNMP
access-list 101 deny udp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 eq 161
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
dialer-list 1 list 101

The ip route global configuration commands that configured static routes for the home sites have been removed from the configuration. The snapshot server interface configuration command enables snapshot routing. The "5" sets the length of the active period to five minutes.


Note Snapshot routing must be configured on rotary interfaces, which are established by the dialer rotary-group interface configuration command. ISDN interfaces are rotary interfaces by definition, so you do not need to use the dialer rotary-group command in ISDN configurations.

Home Site Modified for Snapshot Routing

The following is the configuration of Dave's home site router after modification for snapshot routing:

hostname dave-isdn
!
username central-isdn password 7 08274341
isdn switch-type basic-5ess
!
interface ethernet 0
ip address 11.108.147.1 255.255.255.0
no mop enabled
!
interface bri 0
ip address 11.108.90.1 255.255.255.0
encapsulation ppp
no ip route-cache
bandwidth 56
dialer map snapshot 1 name central-isdn 14155558370

dialer map ip 11.108.90.53 name central-isdn speed 56 14155558370
dialer-group 1
snapshot client 5 43200 suppress-statechange-updates dialer

ppp authentication chap
!
dialer-list 1 list 101

The ip route commands that configured static routes for the home sites have been removed from the configuration. The dialer map snapshot interface configuration command establishes a map (whose sequence number is 1) that the router uses to connect to the central site router for the exchange of routing updates. The name keyword specifies the name of the remote router that is associated with the dial string. Because the ppp authentication interface configuration command enables CHAP authentication, when this router dials the central router, it receives the host name of the central router and compares it with the name specified by the name keyword.

The snapshot client interface configuration command sets the length of the active period to five minutes (a value that must match the value set in the snapshot server's configuration) and sets the length of the quiet period to 43,200 seconds (12 hours). The suppress-statechange-updates keyword prevents the routers from exchanging updates during connections that are established to transfer user data. The dialer keyword allows the client router to dial up the server router in the absence of regular traffic and is required when you use the suppress-statechange-update keyword.

Snapshot and Novell IPX Networks

This section describes a Novell IPX network for which snapshot routing has been configured. Client routers at branch offices use DDR to connect to a central router over ISDN. At the central office, NetWare servers use the Novell IPX protocol to provide services to NetWare clients on each branch office network. Some client-to-server connections are required during a limited period of the day. Figure 21-4 illustrates the network.


Figure 21-4: Topology of the Novell IPX network.


In this topology, the client routers are responsible for updating their routing tables by connecting to the server router when the quiet period expires. The client routers also retrieve update information if a reload occurs.


Note Snapshot routing works with Novell 3.x and 4.x networks. However, Novell 4.x includes a time synchronization protocol that causes Novell 4.x time servers to send an update every 10 minutes. To prevent the time server from generating update packets that would cause unwanted connections, you should load a NetWare Loadable Module (NLM) named TIMESYNC.NLM that allows you to increase the update interval for these packets to several days. A similar problem is caused by Novell's efforts to synchronize NDS replicas. NetWare 4.1 includes two NLMs, DSFILTER.NLM and PINGFILT.NLM, that work together to control NDS synchronization updates. You should use these two modules to make sure that NDS synchronization traffic is sent to specified servers only at the specified times.

Server Router Configuration

The following is the complete configuration for the server router:

hostname RouterA
!
username RouterB password 7 120DOA031D
username RouterC password 7 111D161118
username RouterD password 7 43E7528384
isdn switch-type vn3
!
ipx routing
 
interface Ethernet 0
ip address 192.104.155.99 255.255.255.0
ipx network 300
!
interface bri 0
ip address 1.0.0.1 255.0.0.0 
encapsulation ppp
ipx network 10 
no ipx route-cache
ipx update-time 20
ipx watchdog-spoof 
dialer idle-timeout 60 
dialer wait-for-carrier-time 12 
dialer map ipx 10.0000.0000.0002 name RouterB broadcast 041389082
dialer map ipx 10.0000.0000.0003 name RouterC broadcast 041389081
dialer map ipx 10.0000.0000.0004 name RouterD broadcast 041389083
!
dialer-group 1
snapshot server 10
ppp authentication chap
!
access-list 901 deny 0 FFFFFFF 0 FFFFFFFF 457
access-list 901 deny 1 10.0000.0000.0001 0 10.ffff.ffff.ffff 453
access-list 901 deny 4 10.0000.0000.0001 0 l0.ffff.ffff.ffff 452
access-list 901 deny 4 FFFFFFFF 0 FFFFFFFF 456 
access-list 901 permit -1
!
dialer-list 1 list 901

The configuration begins with the host name used for CHAP authentication. The usernames correspond to the host names of Router B, Router C, and Router D. The isdn switch-type global configuration command specifies that the router connects to a French VN3 ISDN BRI switch.

Interface Configuration

The dialer idle-timeout interface configuration command specifies 60 seconds as the amount of idle time that must elapse before the router disconnects the line. The dialer wait-for-carrier-time interface configuration command sets the wait-for-carrier time to 60 seconds.

The first dialer map interface configuration command sets the next-hop address of Router B to 10.0000.0000.0002. When Router B dials up the server router (Router A), the server router uses the next hop address to transmit packets to Router B. The broadcast keyword sets 041389082 as the address to which IPX broadcasts are to be forwarded. The second and third dialer map commands set similar values for Router C and Router D.

The snapshot server interface configuration command sets the length of the active period to 10 minutes. The ppp authentication interface configuration command sets CHAP as the authentication protocol.

Access List Configuration

Access lists are used to determine whether an outgoing packet is interesting or uninteresting. Packets that are not interesting are dropped, and packets that are interesting cause a call to be placed if a call is not active or cause a call that has already been placed to be maintained as active. The access lists defined by this configuration are extended Novell IPX access lists. The first access-list global configuration command defines any packets intended for the Novell serialization socket as uninteresting. The second access-list command defines RIP packets as uninteresting. The third access-list command defines SAP packets as uninteresting. The fourth access-list command defines Novell diagnostic packets generated by the Autodiscovery feature as uninteresting, and the final access-list command states that all other packets are interesting. The dialer-list global configuration command assigns access list 901 to dialer access group 1, which is associated with BRI 0 by the dialer-group interface configuration command.

Client Router Configuration

The configurations for the client routers are the same except for the commands that configure the router's host name, the username that it uses when it dials up Router A, and the router's network numbers. The following is the configuration for Router B:

hostname RouterB
!
username RouterA password 7 105A060D0A
ipx routing
isdn switch-type vn3
isdn tei first-call
!
interface ethernet 0
ip address 192.104.155.100 255.255.255.0
ipx network 301
!
interface bri 0
no ip address
encapsulation ppp
ipx network 10
no ipx route-cache
ipx update-time 20
ipx watchdog-spoof
dialer idle-timeout 60
dialer wait-for-carrier-time 12
dialer map snapshot 1 name RouterA 46148412

dialer map ipx 10.0000.0000.0001 name RouterA broadcast 46148412
dialer-group 1
snapshot client 10 86400 dialer

ppp authentication chap
!
access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 457
access-list 901 deny 1 10.0000.0000.0002 0 10.ffff.ffff.ffff 453
access-list 901 deny 4 10.0000.0000.0002 0 10.ffff.ffff.ffff 452
access-list 901 deny 4 FFFFFFFF 0 FFFFFFFF 456
access-list 901 permit 0
!
dialer-list 1 list 901

The configuration begins with the host name used for CHAP authentication. The usernames correspond to the host names of Router B, Router C, and Router D. The isdn switch-type global configuration command specifies that the router connects to a French VN3 ISDN BRI switch.

The isdn tei global configuration command uses the first-call keyword to specify that ISDN terminal endpoint identifier (TEI) negotiation is to occur when Router A places or receives its first ISDN call. (The default is for TEI negotiation to occur when the router is powered on.)

Interface Configuration

The dialer wait-for-carrier interface configuration command specifies 12 seconds as the number of seconds that the interface will wait for the carrier to come up when it places a call.

The snapshot client interface configuration command sets the length of the active period to 10 minutes (a value that must match the value set in the snapshot server's configuration) and sets the length of the quiet period to 86,400 seconds (24 hours). Because the suppress-statechange-updates keyword is not used, the routers can exchange updates during connections that are established to transfer user data. The dialer keyword allows the client router to dial up the server router in the absence of regular traffic.

Configuring AppleTalk over ISDN

To run AppleTalk over an ISDN network effectively, you need to prevent Name Binding Protocol (NBP) packets and RTMP updates from triggering unnecessary connections over ISDN connections.

Figure 21-5 shows a sample AppleTalk network that uses ISDN to connect two networks located in different cities. Users on the district office network occasionally need access to servers located on the main office network and vice versa. In this scenario, both routers dial up each other when user data from one part of the network needs to reach the other part of the network.


Figure 21-5:
An AppleTalk network over ISDN.


Users of hosts connected to the main office network do not need to access the Training zone, so when configuring Router A, one goal is to prevent NBP packets generated by the Training zone from triggering an ISDN connection with the main office network. Another configuration goal for both routers is to prevent NBP packets generated by the printers on each network from triggering an ISDN connection.

To control the forwarding of NBP packets, use AppleTalk-style access lists. AppleTalk-style access lists allow you to control the flow of NBP packets based on the type of the entity that originated the packet, the name of the entity that originated the packet, and the zone of the entity that originated the packet.


Note The capability to control the forwarding of NBP packets was introduced in Cisco IOS Software Release 11.0.

Both routers also need to control RTMP packets. To control RTMP packets, configure static AppleTalk cable ranges and node numbers and use the no appletalk send rtmps command on the ISDN BRI or PRI interface that connects two AppleTalk networks.

Router A Configuration

As shown in Figure 21-5, Router A is located in the district office. The district office network consists of two zones: Sales and Training. On Router A, an AppleTalk-style access list is assigned to BRI 0 to prevent the forwarding of NBP packets that come from printers and NBP packets that come from the Training zone. If the router were to allow the forwarding of these packets, they would trigger an unnecessary ISDN connection to the main office network.

hostname RouterA
!
username RouterB password 7 125D063D2E
appletalk routing
appletalk static cable-range 20-20 to 15.43 zone Administration
appletalk static cable-range 25-25 to 15.43 zone Marketing
isdn switch-type basic-ni1
!
interface ethernet 0
appletalk cable-range 5-5 5.128
appletalk zone Sales
!
interface ethernet 1
appletalk cable-range 10-10 10.26
appletalk zone Service
!
interface bri 0
appletalk static cable-range 15-15 15.42
appletalk zone PhoneZone
no appletalk send-rtmps
encapsulation ppp
ppp authentication chap
dialer idle-timeout 240
bandwidth 56
dialer map appletalk 15.43 name RouterA speed 56 912065553240
dialer-group 1
isdn spid1 602555463101 5554631
!
access-list 601 deny nbp 1 type LaserWriter
access-list 601 deny nbp 2 zone Training
access-list 601 permit nbp 3 zone Sales
access-list 601 deny other-nbps
access-list 601 permit other-access
!
dialer-list 1 list 601

The hostname global configuration command establishes the host name of Router A. The username global configuration command establishes the name of the router that is allowed to dial up Router A. The name corresponds to the host name of Router B. The password keyword indicates that the username command specifies a password. The "7" indicates that the password is encrypted using a Cisco-defined encryption algorithm. The appletalk routing global configuration command enables AppleTalk routing.

The appletalk static cable-range global configuration commands create static AppleTalk routes to the zones in the main office network. Static AppleTalk routes are required because the no appletalk send-rtmps interface configuration command prevents the exchange of RTMP updates between the two networks. Without static routes, zones for the main office would not appear when users open the Chooser on hosts connected to the district office network. The isdn switch-type global configuration command specifies that Router A connects to a National ISDN-1 switch.

Interface Configuration

The appletalk cable-range interface configuration commands for each Ethernet interface establish the network number for the cable segment to which the interface connects and the node number of the interface. For each interface, the appletalk zone interface configuration command establishes the zone name for the network that is connected to the interface. None of the interface configurations specifies an AppleTalk routing protocol, so the interfaces use the default routing protocol, RTMP.

The no appletalk send-rtmps interface configuration command prevents Router A from sending RTMP updates out on interface BRI 0. To compensate for the lack of RTMP exchange, you must configure static AppleTalk routes (using the appletalk static cable-range global configuration command).

The encapsulation ppp interface configuration command specifies PPP encapsulation, and the ppp authentication chap command enables CHAP authentication. The dialer idle-timeout interface configuration command sets the idle timeout to 240 seconds (four minutes). The bandwidth interface configuration command tells routing protocols that the line operates at 56 Kbps.

The dialer map interface configuration command establishes the remote site that Router A is to call. In this case, the dialer map command establishes 15.43 as the next hop address. The name keyword specifies the name of the remote router that is associated with the dial string. The speed keyword specifies that Router A is to set the line's rate to 56 Kbps, which is required when the connection traverses a switch that does not support Signaling System 7. The dialer-group interface configuration command associates the interface BRI 0 with dialer access group 1.

The isdn spid1 interface configuration commands represent service profile identifiers (SPIDs) and are required by National ISDN-1 switches. Service providers assign SPIDs to associate a SPID number with a telephone number. Your service provider can tell you if SPIDs are required for your switch. In this example, SPID 1 identifies 602 as the area code, 555 as the exchange, 4631 as the station ID, and 01 as the terminal identifier.

Access List Configuration

The first access-list nbp global configuration command defines access list 601 and prevents the forwarding of NBP packets generated by any LaserWriter printer on the district office network. The second access-list nbp command prevents the forwarding of NBP packets generated by the Training zone. The third access-list nbp command allows the forwarding of NBP packets generated by the Sales zone.

The access-list other-nbps global configuration command prevents the forwarding of all other NBP packets that have not been explicitly permitted or denied by previous access-list nbp global configuration commands.

The access-list other-access global configuration command permits all other access checks that would otherwise be denied because they are not explicitly permitted by an access-list command. The dialer-list global configuration command assigns the access list 601 to dialer access group 1, which is associated with BRI 0.

Router B Configuration

As shown in Figure 21-5, Router B is located in the main office. The main office network consists of two zones: Marketing and Administration. With the exception of the OpenReqs server in the Administration zone, users of hosts connected to the district office network do not need to access servers located in the Administration zone. Like the district office network, each zone in the main office network has its own printer, so there is no need for Router B to forward NBP packets that the printers originate. The access list for Router B prevents NBP packets that come from printers and NBP packets that come from all servers in the Administration zone (except OpenReqs) from triggering an ISDN connection to the district office network.

hostname RouterB
!
username RouterA password 7 343E821D4A
appletalk routing
appletalk static cable-range 5-5 to 15.42 zone Sales
appletalk static cable-range 10-10 to 15.42 zone Training
isdn switch-type basic-5ess

!
interface ethernet 0
appletalk cable-range 20-20 20.5
appletalk zone Administration
!
interface ethernet 1
appletalk cable-range 25-25 25.36
appletalk zone Marketing
!
interface bri 0
appletalk static cable-range 15-15 15.43
appletalk zone PhoneZone
no appletalk send-rtmps
encapsulation ppp
ppp authentication chap
dialer idle-timeout 240
bandwidth 56
dialer map appletalk 15.42 name RouterB speed 56 917075553287
dialer-group 1
!
access-list 601 deny nbp 1 type LaserWriter
access-list 601 permit nbp 2 object OpenReqs
access-list 601 permit nbp 3 zone Marketing
access-list 601 deny other-nbps
access-list 601 permit other-access
dialer-list 1 list 601

The configuration for Router B is similar to the configuration for Router A, with the follwing differences:

Summary

When you configure ISDN, controlling packets that trigger unnecessary connections is a major concern. In the past, one way of controlling routing update packets was to configure static routes. Snapshot routing and NBP-packet filtering provide new ways to control routing updates. Snapshot routing allows you to configure the network so that routed protocols update their routing tables dynamically without triggering frequent and costly ISDN connections. Snapshot routing is ideally suited for relatively stable networks in which a single router is a central point through which routing updates flow.


hometocprevnextglossaryfeedbacksearchhelp
Posted: Wed Apr 10 10:48:07 PDT 2002
All contents are Copyright © 1992--2002 Cisco Systems, Inc. All rights reserved.
Important Notices and Privacy Statement.